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A B S T R A C T

We find capillary wave turbulence (WT) spanning multiple dynamical regimes and geometries, all within
a 40 μL volume microfluidic system. This study is made viable with recent advances in ultra-high-speed
digital holographic microscopy, providing 10 μs time and 10 nm spatial resolutions for images across the
entire field at speeds sufficient to capture the salient wave phenomena. The observed WT types are: (i)
discrete wave turbulence (DWT) dominated by finite domain effects, (ii) kinetic wave turbulence (KWT) that
approximately satisfies weak wave turbulence (WWT) theory, and (iii) intermediate wave turbulence (IWT)
that exhibits features from both DWT and KWT. We show that WT regime depends on input power and
wavenumber, and we provide simple nondimensional parameters – derived from WWT theory – for intra-
spectrum regime classification. Using the nondimensional parameters, a bulk nonlinearity metric is defined that
employs bicoherence-based weighting. Analysis of experimental results reveals a correspondence between the
theoretical regime classifiers and the observed phenomena. At sufficiently high input powers, the phenomena
substantially depart from the WWT theory and reveal a regime of strongly nonlinear wave turbulence (SWT)
defined by shallower spectral slopes that achieve a constant slope value over a range of input powers. This
may suggest a corresponding power-law solution to the governing equations. This work augments current
understanding of WT regimes and behaviors, and directly applies to many fields beyond fluid mechanics. For
example, SWT appears upon the fluid interface at powers less than required for atomization, indicating that
further study of SWT is needed to properly understand ultrasound-driven fuel spray atomization and drug and
agricultural nebulization.
1. Introduction

Applications from ink jet printing to fuel combustion depend on
rapid, monodisperse droplet production [1,2]. Many depend on atom-
ization to produce micron-sized droplets from small fluid volumes [3].
Leveraging enormous acceleration, high-frequency ultrasound (HFUS)
at 1MHz and beyond extends the utility of ultrasound-driven atom-
ization to broader fluid parameter ranges. The phenomena are poorly
understood and even basic predictions – such as droplet diameter and
ejection rate – remain elusive. In particular, classical interpretations of
ultrasound-driven atomization [4–7] that rely on sophisticated model-
ing [8–11] produce inaccurate estimates at frequencies beyond 100 kHz.
More recent, ad-hoc approaches produce interesting results but remain
insufficient [12,13]. In fact, classical mechanisms of acoustically-driven
interfacial wave generation used even to recent times [14–17] are
absent in MHz-order HFUS-driven wave fields [18].
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A top-down understanding of the relationship between the wave
field and droplet statistics is desirable for navigating these theoret-
ical challenges. Highly stochastic, generally non-Gaussian turbulent
capillary wave fields preceding aerosol dispersal are a key source of
theoretical ambiguity. When forcing magnitudes are increased above
a threshold, low-frequency linear mode superpositions give way to
energy cascades across essentially continuous wavenumber distribu-
tions [18–20]. The hallmark of this turbulent cascade is a well-defined,
monotonically decreasing, non-integer linear slope in the log–log PSD.

Wave turbulence (WT) is of great general interest arising in diverse
contexts, from brain activity patterns [21] to optical wave propaga-
tion within nonlinear media [22]. In pioneering work, Zakharov and
Filonenko [23] derived a kinetic equation – at third order in wave
amplitudes – governing capillary WT cascades in unbounded basins by
expanding the interfacial dynamics Hamiltonian. This equation governs
conservative dynamics from the ‘‘inertial’’ range down to the beginning
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Fig. 1. High-speed digital holographic microscopy of turbulent microscale capillary
waves. (a): An interferometer using a 666 nm laser expanded to occupy the entire field
of view of the optics produces phase and intensity patterns that encode 3D surface data
recorded at 115.2 kfps. A 25 × 20 × 0.5 mm piezoelectric transducer, with a 6.4 mm
window in the electrodes allowing laser passage, is driven at its resonant frequency of
7MHz, causing vibration below a 725 μm deep fluid volume contained by a 9.5 mm
diameter annulus. (b) Four frames from a typical holographic data set of interfacial
dynamics depicts a typical three-wave interaction.

of the viscous ‘‘dissipation’’ range. They showed that the stationary col-
lision integral identity is satisfied by 𝑛(𝑘) ∝ 𝑘−𝛾 , where 𝑛 is proportional
to the square of the wave amplitude at wavenumber 𝑘. The system in
Ref. [23] has 𝛾 = 17∕4. Due to the governing kinetic equation, this is
denoted ‘‘kinetic’’ WT (KWT). Strong WT (SWT), by contrast, is WT
violating the weak nonlinearity assumption.

Within finite geometries, WT behaviors deviate substantially from
the idealizations inherent to KWT. Wavemodes form a countable set
and are designated ‘‘discrete’’ WT (DWT). Kartashova [24] shows that
exact three-wave equations satisfied in capillary KWT become Dio-
phantine in DWT and are equivalent to 𝑥3 + 𝑦3 = 𝑧3, which has
no solutions (see Fermat’s Last Theorem [25]). In such an absence of
exact resonances, waves build to finite amplitudes, invoking higher
order terms in the nonlinear dispersion relations [26,27] and leading
to quasi-resonant three-wave relations [28]:

|𝜔𝑘1 ± 𝜔𝑘2 − 𝜔𝑘3 | ≤ 𝛿NRB, (1a)

𝐤1 ± 𝐤2 − 𝐤3 = 0, (1b)

where 𝜔𝑘𝑛 ≜ 𝜔(𝐤𝑛). The parameter 𝛿NRB represents nonlinear resonance
broadening (NRB) resulting from the finite-amplitude dispersion rela-
tion. In unbounded media, 𝛿NRB = 0 and exact resonances appear as
arguments to Dirac combs within a collision integral kernel. In finite
media, 𝛿NRB builds to finite values so that the equations are satisfied
by groupings of quasiresonances about exact modes. Modal broad-
ening facilitates additional wave interactions and eventual turbulent
breakdown.

When 𝛿NRB values are relatively small, the energy cascade is ar-
rested and confined to smaller wavenumbers. This confinement is a
phenomenon that some authors refer to as ‘‘frozen’’ turbulence [27].
Connaughton et al. [28] have predicted the existence of a critical
NRB value beyond which cascades indefinitely advance. The mech-
anism of cascade advancement from larger forcing – a phenomenon
that some authors refer to as ‘‘sandpiling’’ – has been described by
Nazarenko [29]. In real systems, DWT and KWT coexist [27,30–33].
The dominance of either mechanism depends on wavenumber and
forcing amplitude and can be classified as follows: (i) at low powers
and/or small wavenumbers, DWT dominates; (ii) at high powers and/or
large wave numbers, KWT dominates; and (iii) at intermediate powers
2

and/or intermediate wavenumbers: a combination of DWT and KWT
contribute to observations. We designate condition (iii) as intermedi-
ate WT (IWT). Other authors have referred to this as ‘‘mesoscopic’’
WT [32].

The majority of liquid WT experiments are devoted to gravity
waves of the type found on sea surfaces [34]; surface tension-dominant
systems – capillary waves – receive comparatively little attention. Work
that has considered capillary waves generally takes place in deep water
environments, often in the presence of gravity waves, and focuses
on regimes where kinetic theory is approximately satisfied. Brazh-
nikov et al. [35] studied capillary wave turbulence on an air–water
interface with low-frequency pumping [(102) Hz] leading to a turbu-
lent cascade with a power law, 𝛾 = 17∕4, that agrees with Zakharov’s
prediction. Using a capacitive technique, Falcon et al. [36] measured
capillary–gravity wave turbulence on the surface of a mercury pool
driven with (101) Hz forcing. They found non-Gaussian wave statistics
and spectral slopes that agree with WWT theory for each interaction
type (four-wave for gravity and three-wave for capillary) within corre-
sponding wavenumber ranges. In a similar work, Xia et al. [19] studied
the formation of capillary wave turbulence, observing modal broaden-
ing and a transition from discrete to continuous wavemode spectra as
a result of the theorized modulation instability. They also confirmed
Zakharov’s slope prediction within a fully developed turbulent capillary
wave field. Other studies have similarly sought to study various aspects
predicted by the WWT theory, focusing primarily on KWT [37–39].
All of these are a result of the classical Faraday wave system where
a cascade (the ‘‘inertial’’ region) joins a small-wavenumber injection
range to a large-wavenumber dissipation range. In contrast to KWT,
explicit consideration of finite-domain effects and DWT has remained
mostly theoretical, with Pan and Yue [40] recently providing an elegant
framework to account for discreteness by extending earlier work in
the kinetic theory of deep-water capillary waves [41,42]. Here, we
study a surface tension-dominated system where spatial scales are much
smaller than the capillary length, 𝑘−1∗ =

√

𝜎∕𝜌 𝑔, so that the effect
of gravity is negligible. The waves are driven using a range of HFUS
forcing that generates wavefields demonstrating all WT regimes, from
DWT to KWT. With sufficiently strong forcing, we observe energy
cascades in a strongly nonlinear regime with power-law spectral slopes
that depart from those defining the associated WWT theory for KWT.
In these systems, injection occurs at a much higher frequency than
the dissipation range, so that these are not classical Faraday systems.
The device geometry used in our experiments approximates the di-
mensions of moderately shallow, surface-wetting ‘‘puddles’’ that form
on prototype portable ultrasonic nebulizers developed in our lab [43]
(see [supplemental materials]). As such, the observed spectra represent
wavemodes that occur within a mixture of shallow, intermediate, and
deep water depths. We can access these dynamics due to microsecond-
nanometer resolutions provided by our custom ultra high-speed (UHS)
digital holographic microscope (DHM) [44]. Without this capability,
relevant portions of the cascade would be unreachable. Summariz-
ing, the associated data pass through several quantitatively-significant
physical regimes due to the range of scales, geometries, and wavenum-
bers we considered: (i) basin depth: shallow, intermediate, and deep;
(ii) dominant WT dynamics: discrete, intermediate, and kinetic; and
(iii) nonlinearity level: weak and strong. To aid in the analysis and
classification of the turbulent wave systems, we derive dimensionless
quantities from discrete and kinetic theory.

2. Experiment

The experimental configuration is outlined in Fig. 1. The device is
a 25mm × 20mm × 0.5 mm single-crystal, transparent lithium niobate
piezoelectric transducer with electrodes deposited on each face leaving
a 6.35 mm diameter window. In order to repeatably produce a fluid
sample upon this substrate, a 60 μm thick polyimide annulus with inner
diameter 9.5 mm was affixed to the top face, encircling the window.
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Fig. 2. Turbulent micro capillary wave power spectral density regime classification. (a) The measured power spectral density, plotted with respect to wavenumber as functions of
increasing power may be classified in terms of their WT regimes: (blue) discrete, (yellow) intermediate, (pink) kinetic, and (gray) strong. The first three are defined in Eqs. (6) and
(9). The fourth is discussed later and demonstrated in Fig. 3. (b) An input of 24.3 mW leads to an arrested cascade. Increasing the power to 26mW leads to cascade completion,
demonstrating a critical NRB value as theorized in Ref. [28]. Also shown (light to dark purple lines) are three input powers preceding 24.3 mW: 15.5 mW, 18.5 mW, and 21.5 mW.
The indicated slopes are 17∕4, the kinetic capillary wave slope predicted by Zakharov [23]; the steepest slope, 21∕4, observed in simulations of Ref. [40] and corresponding to
an approximately constant slope over the KWT regime here (as discussed later); and the steepest slope, 30∕4, observed in our experiments, both at capillary wave onset and
mmediately after the critical NRB value for a 26mW input. Spectra in these plots are generated using Welch’s method with Hann windowing and fifty percent overlap to average
oughly one hundred spectra for all but the lowest two powers (0 and 7mW). The shallow regime (not shown) exists at wavenumbers ≲ 2 krad/m. A detailed description of what

is meant by ‘‘arrested cascade’’, ‘‘cascade completion’’, and ‘‘critical NRB value’’ is provided in the main text. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Deionized water (40 μL) was pipetted into the annulus such that a thin
ircular lens with maximum central depth ≈ 725 μm completely filled

the polyimide annulus, placing the contact line at the top edge of the
annulus. A sinusoidal voltage signal was applied at 7.001 MHz, driving
the fundamental thickness-mode resonance in the transducer [45].
Greater detail regarding materials, fabrication, and characterization is
available in [supplemental materials].

The central portion of the air–water interface was then imaged using
an UHS camera (Photron, SA-Z) coupled to a DHM (Lynceé Tec SA,
Lausanne, Switzerland) with custom optics designed by Lynceé Tec SA
for these experiments. High-intensity coherent light from a 666 nm
laser is equally split between measurement light passing through the
sample and reference light passed unhindered around the sample. Light
passing through the sample medium encounters a phase delay with
respect to the reference. Using the sample’s refractive index, the phase
delay may be associated with a displacement up to 2𝜋 𝜆 where 𝜆 is
he light source’s wavelength. Phase jumps exist at integer multiples
f 2𝜋 𝜆; left unaccounted for, they create ambiguity in predictions
f the displacement of the sample’s medium. However, if the height
radually changes with respect to the viewing plane, phase jumps that
ccur can be unwrapped – accounted for – to produce high-fidelity
urface displacement measurements well beyond the 2𝜋 𝜆 limit. These
easurements take the form of phase-intensity images of the viewable

urface called ‘‘holograms’’. We obtained surface holograms covering a
00 μm×300 μm square central region of the oscillating fluid interface.
olograms were recorded at 115.2 kfps with a 10 nm displacement

esolution along the light propagation direction, and a 1.2 μm lateral
mage plane resolution. The curated data (300GB) obtained for this
tudy are freely provided for download [46].

. Classifying wave turbulence regimes

We analyze the experimental results from two perspectives: (i) intra-
pectrum classification: which permits wavenumber-dependent analysis
ithin a given experimental run, and (ii) global nonlinearity analy-

is: which associates a single value with the nonlinearity for a given
xperimental run.
3

.1. Intra-spectrum regime classification

We use an approach similar to Zakharov [47] and L’vov and
azarenko [30] to facilitate intra-spectrum analysis. They compared

he nonlinear resonance broadening (NRB), 𝛿NRB, to the frequency
pacing, 𝛿𝑘, in the eigenmode grid that is imposed by the finite
eometry. DWT dominates the wavemode behavior when 𝛿NRB ≪ 𝛿𝑘.
WT dominates the wavemode behavior when 𝛿NRB ≫ 𝛿𝑘. Otherwise,

he characteristics of both types may be observed, leading to IWT. Their
uantification of NRB is derived from WWT theory (see [supplemental
aterials]). In other words, when resonances have been sufficiently

roadened, the injected energy can more easily traverse the eigenmode
rid from small to large wavenumbers, leading to fully-developed,
ell-defined WT cascades.

With this approach in mind, we derive and apply dimensionless pa-
ameters to quantitatively classify WT regimes observed in our surface
easurements. In addition to aiding in the classification of experimen-

al observations, these parameters also help to identify the appropriate
pproach to later use in analysis of the wave phenomena. For example,
hen DWT dominates, resonance conditions are Diophantine equations
i.e., algebraic equations defined over integers), and therefore rigorous
nalysis may require a number theoretical approach [24].

The appropriate formulation of the NRB depends on the wave
urbulent regime being analyzed, with NRB in KWT expressed via the
inetic equation and NRB in DWT expressed via the discrete equations
f motion [see supplemental materials]. Each of these is associated with
he collision integral kernel localized to the particular wavenumber
eing considered and represent the coupling strength applied to a
roadened (by NRB) Delta function condition. In the case of DWT, a
haracteristic broadening depends on the number of exact resonances,
𝑘, that are numerically significant at a fixed wavenumber, as dis-

ussed below (consult Ref. [30] for greater detail). The NRB parameter
s given for these two cases by [30]

NRB =

{

|𝑉𝑘 𝑎𝑘|𝑘, (DWT)
2 2 2

(2)

|𝑉𝑘| |𝑎𝑘| (𝑘𝐿) ∕𝜔𝑘, (KWT)



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 172 (2023) 113615J. Orosco et al.

n
f

c
f
O
t
d
(
r

3

𝜔

C
n
w

D

K

I

B
a
i

𝑉

where |( ⋅ )| denotes the complex modulus. The parameter 𝑉𝑘 is a
simplified approximation of the interaction coefficient; it only depends
upon the wavenumber. The canonical amplitude variable 𝑎𝑘 is related
to the Fourier amplitude [27]:

𝜁𝑘 =
√

𝜌𝜔𝑘

2 𝜎 𝑘2
(𝑎𝑘 + 𝑎∗−𝑘), (3)

where 𝜎 is the interfacial surface tension and 𝜌 is the fluid density.
Note that Eq. (3) assumes normalization of the Fourier transform by
√

2𝜋. For the capillary wave systems we consider here, wavenumber
locality is assumed in the resonance interactions – that is, 𝑘1 ∼ 𝑘2 ∼ 𝑘3
– so that 𝑘 ≳ 1 is a reasonable approximation. We set 𝑘 = 1 for an
order-of-magnitude analysis in order to avoid unnecessary complexity.
Deviations of 𝑘 that remain approximately within an order of mag-
itude do not significantly impact the analysis and classification that
ollows.

The particular forms of the dispersion relation and the interaction
oefficient depend on the depth of the fluid. They determine the
orm our classification parameters ultimately take for a given data set.
ur system progresses from shallow at wavenumbers of (102) rad/m

o deep at wavenumbers of (104) rad/m. Intermediate regimes are
efined by interpolating between the shallow and deep conditions
see [supplemental materials]), and formulations for both asymptotic
egimes (shallow and deep) are therefore needed.

.1.1. Shallow water classification (𝑘∗ ≪ 𝑘 ≪ 1∕ℎ)
The shallow water capillary wave dispersion relation is

𝑘 =
√

𝜎 ℎ
𝜌

𝑘2. (4)

The interaction coefficient for shallow water waves is [48]

𝑉𝑘 = 𝑘2

8𝜋

(

𝜎
4 𝜌 ℎ

)1∕4
. (5)

ombining Eqs. (2)–(5) and accounting for eigenmode grid spacing as
oted in [supplemental materials], we produce the following shallow-
ater WT regimes:

WT if 𝛥𝑠 =
1

16𝜋𝑣∕𝑤 ≪ 1, (6a)

WT if 𝛬𝑠 = 2𝜋2 𝑤 𝛥2
𝑠 ≫ 1, (6b)

WT otherwise, (6c)

where 𝑤 = 1
𝑘 𝜁𝑘

is the wave aspect ratio, 𝑣 = 1
𝑘𝑚 ℎ is the quiescent

fluid volume aspect ratio, and 𝜁𝑘 is the Fourier-transformed wave
amplitude. Referring to Fig. 1, the grid spacing is 𝑘𝑚 = 𝜋∕𝐷inner. We
define the wave seclusion as 𝑤 = 𝑘∕𝑘𝑚. This parameter represents the
extent to which a wavemode is affected by the boundary conditions,
with 𝑤 ≫ 1 indicating negligible boundary effects and the inverse
indicating significant boundary effects. Note that we have retained any
constant factors (e.g., 16𝜋) in the derived nondimensional expressions
in keeping with our order-of-magnitude analysis.

Essentially, the condition for shallow water DWT is that the qui-
escent fluid should be much deeper (relative to its own breadth)
than the waves are tall (relative to their own wavelength). For KWT,
the opposite should be true, and the waves should be isolated from
boundary effects.

3.1.2. Deep water classification (𝑘 ≫ 1∕ℎ)
The deep water capillary wave dispersion relation is

𝜔2
𝑘 = 𝜎

𝜌
𝑘3. (7)

y using our previously noted assumption of wavenumber locality
nd performing an order-of-magnitude analysis, we approximate the
nteraction coefficient [27] for capillary waves in deep water:

𝑘 ≈ 1
√

𝜌𝜔3
𝑘 . (8)
4

8𝜋 2 𝜎
Combining Eqs. (2)–(3), and (7)–(8) and accounting for eigenmode grid
spacing as noted in [supplemental materials], we obtain the following
deep-water WT regimes:

DWT if 𝛥𝑑 = 1
12𝜋𝑤∕𝑤 ≪ 1, (9a)

KWT if 𝛬𝑑 = 3𝜋2
2 𝑤 𝛥2

𝑑 ≫ 1, (9b)

IWT otherwise. (9c)

Thus, in deep water only the lateral dimension is relevant, whereas
in shallow water (Eq. (6)) the definition of the regimes depend on
both dimensions. For deep water, finite-basin effects occur when the
a given wave’s steepness is large relative to the boundary effects on
that wave. Moreover, in deep water, the KWT condition has weaker
wave-boundary seclusion requirements and stronger wave steepness re-
quirements. This qualitatively agrees with expressions found elsewhere
in the literature [29,49]. Eqs. (6) and (9) and the wave turbulence
regimes they define depend upon the wavenumber. Fundamentally, the
wave turbulence regimes are geometrically determined. In other words,
the variables used in these formulations are based on the relative
geometries of the wave and the fluid domain.

3.1.3. Intra-spectrum analysis
We can use the foregoing nondimensional parameters in order to

approximately demarcate wave turbulence regimes within the spectrum
of a given set of measurements (i.e., for a given power input). Fig. 2
outlines the spectral features of our system written in terms of power
spectra, 𝑆. In shallow regions, 𝑆D-I ∝ 𝑘−2 and 𝑆I-K ∝ 𝑘−3, respectively,
for the DWT-IWT (D-I) and the IWT-KWT (I-K) PSD bounds. In deep
regions, 𝑆D-I ∝ 𝑘−4 and 𝑆I-K ∝ 𝑘−5. The change is a consequence of
the continuously increasing effect of 𝛿NRB within the finite-depth basin
as energy is redistributed to larger wavenumbers in the cascade. In
the intermediate regime between shallow and deep wavenumbers, the
change in the regime bounds (i.e., the variation between asymptotic
definitions) – which are proxies for the character of the WT – will
smoothly and monotonically vary, joining the two extremes. Mathe-
matically, this regime is represented by interpolation as described in
[supplemental materials].

Detailed inspection of these spectra reveals order-of-magnitude
agreement of regime bounds with expected spectral characteristics.
Theoretically, the hallmark of DWT is arrested cascades that are in-
crementally extended as NRB increases, allowing energy transfer to
larger wavenumbers (as previously discussed) [29]. Departure from
the expected uniform linearity of the cascade leads to an irregular
lumpy appearance in the spectral shapes visible at lower input powers
(𝑃 ≲ 24mW) in Fig. 2. This indicates energy confinement at smaller
wavenumbers due to insufficient NRB allowing complete energy trans-
fer to larger wavenumbers: cascade arrest. This manner of spectral
volatility defines the DWT regime. As the power is increased towards
the DWT-IWT boundary, the shape and amplitude of the spectra remain
approximately constant until NRB overcomes the discrete modal sepa-
ration, as theorized by Connaughton et al. [28]. Beyond this threshold
power defined by the characteristics of the system – 𝑃 ≳ 26mW
here – energy flows more freely to small scales, leading to longer
cascades, i.e., cascades that extend to a viscous dissipation range at
larger wavenumbers.

The IWT regime is brief and characterized by residual irregularities
of the type found in DWT spectra that are imposed by discreteness.
Slopes in the IWT regime are more easily discernible due to onset of
KWT (recalling that IWT is defined as the intermediate regime that
has both DWT and KWT behaviors, as previously discussed). At still
higher powers, spectral volatility is mostly abated and the spectrum
essentially has the smooth, continuous (linear in log–log space) ap-
pearance associated with KWT. In this regime, we expect Zakharov’s
kinetic theory [23] to hold to good approximation. However, one finds
evidence of a constant spectral slope, with a slope value – approxi-
mately −21∕4 – different than the −17∕4 law theorized by Zakharov.
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This is true despite the otherwise good agreement between the data and
the characteristics of the kinetic theory in this regime. At even higher
powers, the spectra depart from the constant −21∕4 slope, signaling a
change in regime from weak KWT to SWT. It is evident in Fig. 2(a)
that SWT initially appears at higher wavenumbers and spreads towards
lower wavenumbers as the power is increased.

The steepest spectral slope, −30∕4, occurs twice over the range of
investigated powers. Its first appearance is at the onset of continuous
capillary wave motion. This is just beyond a range of input powers
where the dynamics are intermittent and punctuated by brief quiescent
periods. We do not study this low-power (non-stationary) intermittency
range in this work. As the power increases beyond this onset value,
the cascade remains truncated but its slope gradually increases to
a maximum value that persists as the power is further increased to
24.3 mW. With a small subsequent increase in input power (∼ 1.5mW)
o 26.0 mW, the cascade abruptly completes, reinstating the initial
lope of −30∕4. This point in the noted spectra is obvious at the point of
rossover of the indicated spectra in Fig. 2(b). This crossover occurs due
o the truncation of the 24.3 mW spectrum into an elevated dissipation
ange at a wavenumber of roughly 10 krad/m, whereas the completed
ascade continues with a steeper slope to a larger wavenumber of
oughly 32 krad/m. If the power is further increased, the slope gradually
ncreases to ≈ −21∕4 and persists at this value up to an input power
f 125mW. Beyond 125mW, the spectral slope again increases with
n increase in power, approaching an apparently constant value of
−2 in the SWT regime. This feature, which the authors are unable

o compare with other studies from the literature, suggests a power-
aw type solution within a subset of the SWT regime. We note that the
oregoing results differ from those obtained in simulations [40]. The
lopes in the latter range from roughly −21∕4 at lower powers to −17∕4
t the highest powers and were obtained using Zakharov’s kinetic
quations modified to account for the discreteness of the domain.

.2. Global nonlinearity analysis

For the purposes of bulk classification and inter-spectrum compar-
son, we define a single-value nonlinearity metric that is a weighted
verage of the same wavenumber-dependent nonlinearity measure that
e used in the foregoing section (i.e., for intra-spectrum analysis).
t each wavenumber, the weighting is provided by a measure of

hree-wave dynamical correlation known as the bicoherence. Our bulk
arameter is:

𝜇 =

√

√

√

√

√

∑𝑁
𝑛=0

∑𝑛
𝑚=0 𝛿𝑛 𝛿𝑚 𝑏2𝑛,𝑚

∑𝑁
𝑛=0

∑𝑛
𝑚=0 𝑏2𝑛,𝑚

. (10)

Here 𝛿𝑛 = 𝛿NRB(𝜔𝑛)∕𝛿𝑘𝑛 quantifies nonlinearity at wavenumber 𝑘𝑛
sing the ratio of resonance broadening to eigenmode grid spacing.
he weighting in Eq. (10) is provided by the bicoherence, 𝑏𝑛,𝑚. Since
icoherence is defined over a symmetric frequency grid, we take double
ummation over unique pairings. The bicoherence is

𝑛,𝑚 =
|⟨𝜁 (𝑡, 𝑓𝑛) 𝜁 (𝑡, 𝑓𝑚) 𝜁∗(𝑡, 𝑓𝑛 + 𝑓𝑚)⟩𝑡|

⟨|𝜁 (𝑡, 𝑓𝑛) 𝜁 (𝑡, 𝑓𝑚) 𝜁∗(𝑡, 𝑓𝑛 + 𝑓𝑚)|⟩𝑡
. (11)

The sole difference between the numerator and denominator in this
definition is in the order of operations between the time average
⟨ ⋅ ⟩𝑡 and the modulus | ⋅ |. The numerator is the bispectrum. In the
bispectrum, phase information is removed after time averaging, such
that this describes the average wave coupling strength at a particular
point in frequency space. In the denominator of Eq. (11), the phases are
set to zero (i.e., made equivalent) before time averaging, representing
perfect phase coupling. Thus, bicoherence, 𝑏 ∈ [0, 1], measures the
ormalized three-wave coupling strength, and is specifically relevant
or the analysis of capillary waves. Eq. (10) is similar to a metric
sed by Pan and Yue [40]. Since bicoherence obtained from Fourier
5

ethods is noisy and insufficient for use with turbulence spectra, we
Fig. 3. Global nonlinearity map of variable-regime capillary WT. (a) Nonlinearity level
Eq. (10) and terminal cascade wavenumber as functions of increasing input power. (b)
Inertial regime spectral slope over (blue line) the entire cascade and (red line) the deep
water regime. As the power continues to increase, a region of approximate constancy
in nonlinearity, cascade length, and slope is observed just before the critical value,
𝛿∗𝜇 ≈ 0.2, beyond which a decrease of all three parameters occurs. A sharp increase in
ascade length immediately follows 𝛿∗𝜇 ≈ 0.2. The KWT-SWT bound occurs when the
pectral slope exceeds the experimentally constant value, −21∕4, as observed within
he kinetic regime. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

ollow van Milligen et al. [50] in using wavelet-based transforms. The
avelet transforms 𝜁 (𝑡) ↦ 𝜁 (𝑡, 𝑓 ) applied to the surface displacement
easurements provides the instantaneous spectra needed to compute
q. (11). Implementation details are provided in the [supplemental
aterials].

With Eq. (10) as our definition for the nonlinearity parameter,
𝜇 , we find a non-monotonic structure that may be correlated to
ey features of the WT as provided in Fig. 3. The terminal cascade
avenumber and the spectral slope are plotted along with the non-

inearity parameter versus the input power. Since Zakharov’s kinetic
heory is based on assumptions of deep water waves and weak non-
inearity, the transition to strong nonlinearity is evident when the
bserved constant kinetic slope 𝛾 exceeds 21∕4, and corresponding to a
onlinearity parameter value of (𝛿𝜇) = 102. This suggests a boundary
etween weak and strong nonlinearity as follows:

WT if 𝛬∕10 ≫ 1, (12)

here 𝛬 is obtained from Eq. (6b), Eq. (9b), or the interpolated region
n between. Using this criteria, strongly nonlinear wave spectra have
een identified in Fig. 2(a) in gray, appearing first at large wavenum-
ers, and spreading towards smaller wavenumbers as input power is
ncreased.

Fig. 3 reveals many significant features beyond those already men-
ioned. At a 16mW input – corresponding to the DWT-IWT bound –
region of approximately constant nonlinearity level, cascade length,

nd slope value exists. This region corresponds to the frozen turbulence
egion. This immediately precedes a critical value, 𝛿∗𝜇 ≈ 0.2, that
auses cascade completion, as indicated by a very sharp increase in
he terminal cascade wavenumber and an abrupt decrease in both 𝛿𝜇
nd slope. The entirety of the critical transitional process occurs within
he IWT regime, during which the nonlinearity level ‘‘stalls’’, remaining
pproximately constant at 𝛿𝜇 ≪ 1.

The pattern of build-up, plateau, and decrease of the cascade 𝑘-
erminus is initially repeated on entry to the KWT regime. However,
he system enters into the SWT regime without significant decreases
n the slope or nonlinearity level nor a sharp increase in the cascade’s
erminal wavenumber. On transition into the SWT regime, the changing
lope resembles the pattern of slope change beginning at 𝛿∗𝜇 and attains
new plateau of −2. This value of the slope may assume the same role

n the SWT regime that the Zakharov slope assumes in the KWT regime.
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3.3. Conclusions

Our analysis has shown that a thinly-wetted surface driven by high-
frequency (1MHz and beyond) ultrasonic forcing is a dynamically rich
system. The dynamics traverse several wave turbulence regimes and, at
sufficient powers, reach the strongly nonlinear regime. This regime is
defined by spectral slopes that are much shallower than those predicted
by weak wave turbulence theory. A region of slope constancy in the
strong wave turbulence regime suggests the possibility of a corre-
sponding solution to the governing equations. In atomizing systems,
aerosol dispersal occurs at levels of nonlinearity that are inaccessible
to modern wave turbulence theories, let alone classic interpretations of
atomization based on Faraday systems and weakly turbulent phenom-
ena. Further study of strongly nonlinear wave turbulence is therefore
essential to a rigorous understanding of the atomization phenomenon.
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