
Unveiling the Burgers-Riccati physics of fast acoustic streaming

J. Orosco and J. Friend∗
Medically Advanced Devices Laboratory, Center for Medical Devices

Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering
University of California San Diego, La Jolla, CA 92093-0411 USA

(Dated: July 2, 2021)

Inaccurate slow streaming models of acoustically-induced fluid flow remain in use due to the
lack of a generalized alternative. The Multiscale Articulated Differentials Method (MADaM; [see
co-article]) solves this problem with a complete, scale-sensitive spatiotemporal expansion. Applied
to classic axial Eckart streaming, the MADaM produces, in terms of a Burgers equation, a long-
sought transient solution able to accommodate frequencies and amplitudes far beyond slow streaming
models. Steady streaming is governed by a corresponding Riccati equation that, when solved,
produces simple expressions explaining innate features of fast acoustic streaming.

Introduction.—Flows that arise when coupling sound
to fluid media—collectively referred to as “acoustic
streaming”—were first treated by Lord Rayleigh nearly
one hundred fifty years ago [1]. His approach is in-
exorably linked to order-of-magnitude separation, pre-
sumed to exist between the acoustic source’s particle
velocity and the much weaker net streaming velocity it
generates. By “net” flow, we refer to fluid motions that
are non-vanishing within a spatiotemporal average, 〈 · 〉ξ,τ
taken over periodicities in acoustic space (ξ) and time (τ)
coordinates. Rayleigh’s methods were later popularized
by acoustofluidic pioneers including Eckart, Westervelt,
and Nyborg [2–4], whom focused upon temporal sepa-
ration schemes between acoustics and the induced fluid
phenomena.

Driven by medicine and biotechnology needs [5–9],
modern acoustofluidics research has moved far beyond
classic acoustics, from the use of micro- and nano-
scale fluid volumes to high-frequency (MHz and beyond)
acoustic forcing [10–14]. In these systems, bulk acous-
tic streaming—net flow occurring in the bulk—generally
attains velocities on the same order as the driving acous-
tics. Hence, the classic “slow streaming” assumption is
violated and methods using it fail to properly extract
the dynamics of interest. This problem has been widely
recognized for at least forty years [15, 16], and yet, lack-
ing suitable generalized alternatives, the slow streaming
approach still pervades the literature [17–19].

In this letter, we consider a domain with an acousti-
cally transparent (or perfectly absorbing) distal bound-
ary condition wherein an acoustic wave propagating to
extinction produces bounded acoustic streaming. Eckart
streaming, the bulk flow induced within such a system,
is named after the fluid physicist who first provided a
mechanistic description of its behavior [2]. Since then,
Eckart streaming has continued to receive attention due
to its interesting properties and useful applications [20–
22]. A theoretical framework is used here to finally re-
move the slow streaming constraints: the Multiscale Ar-
ticulated Differentials Method (MADaM) [see co-article].
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In contrast to the solely temporal expansions used in tra-
ditional methods, it exploits drastic spatiotemporal scale
disparities typical in microacoustofluidic systems to fa-
cilitate explicit treatment of net flow velocities commen-
surate with driving acoustic wave particle velocities—
the fast streaming condition. We utilize results obtained
with the MADaM to comprehensively investigate fast
Eckart streaming [2], which forms the foundation of many
acoustofluidics phenomena and also routinely produces
behavior known to violate the slow streaming assump-
tion. We reveal the role of nonlinearity in precipitating
monotonic spatiotemporal axial flow buildup and weakly
self-similar streaming profiles. Governing transient equa-
tions are solved to explain intriguing, experimentally-
observed characteristics of steady fast bulk streaming.
Underpinnings.—The one-dimensional model is ex-

tracted from the Navier-Stokes equations with use of
nondimensional disparity parameters: S = ω ts, qp =
ξp/xs, and qλ = (k xs)−1. These are written in terms
of: angular acoustic frequency, ω; characteristic stream-
ing time, ts; on-source particle displacement, ξp; char-
acteristic streaming length, xs; and acoustic wavenum-
ber, k. For our problem, O(S−1) = O(qp) � O(qλ),
where the first equality is tantamount to the statement
that the on-source particle velocity, Ua = ω ξp, is sim-
ilar in magnitude to the maximum streaming velocity,
Us = xs/ts. Or, qp S ∼ 1. A complete discussion sur-
rounding the MADaM, its application, and derivation
of the one-dimensional model, all alongside its assump-
tions, drawbacks, and advantages, is undertaken in [see
co-article].
Due to the drastic disparity between the acoustic and

streaming characteristic time scales—typically with S ∼
105 or more—we are free to consider a regime where the
acoustic field is steady and the streaming field is tran-
sient. The nondimensional steady acoustic wave depends
on a complex-valued wavenumber, κ = κr + ι κi, where
ι =
√
−1. Then κi = (k δa)−1 represents the amount of

attenuation per unit wavelength. When κi is small, the
wave is approximately antisymmetric over a single pe-
riod, so that spatial averages of the acoustic wave taken
over an integer multiple of the wavelength are negligible.
This is equivalent to 〈∂ξL〉ξ,τ ≈ κi � 1, a condition on
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the nondimensional acoustic Lagrangian, L.
Model equations that follow are derived on the ba-

sis of spatial (and temporal) averaging constraints, so
that their validity is restricted to the range for which
the acoustically-localized spatiotemporal average of the
Lagrangian gradient is much less than unity. Further-
more, this condition ensures that κi ≈ µl ω/2 ρ0 c

2, where
µl = µs(4/3 + µv/µs) is the longitudinal viscosity (µs is
the shear viscosity and µv is the volume viscosity), ρ0
is the fluid density, and c is the fluid sound speed. The
fast streaming equations investigated in this letter re-
main valid for acoustic frequencies ranging from at least
10 kHz to 25GHz based on continuum and spatial aver-
aging limitations.
Transient Burgers flow.—In the presence of a perfectly

acoustically absorbing distal boundary, an acoustic wave
generated at the origin will propagate continuously, un-
hindered, while streaming flow must adhere to a no-slip
condition. Essential physics underlying fast axial flow in
this Eckart configuration is succinctly captured with the
forced viscous Burgers equation

∂tu+ u ∂xu = µ∂2
x u+ η−1

m fR(x), (1)

where µ = qλ/R is the nondimensional viscosity, R =
ρ0 xs Us/µl is a Reynolds number for the streaming flow,
and fR(x) = −〈u(a)∂xu

(a)〉ξ,τ is the Reynolds stress forc-
ing, obtained as an acoustically-localized spatiotemporal
average of the advected acoustic wave. We define the ex-
tent of acoustic energy transduction, η(x) = (u(x)/Ua)2,
and the maximum streaming conversion efficiency, ηm =
maxx η(x) = (qp S)−2 = U2

s /U
2
a , in terms of the ratio of

the maximum streaming velocity, Us, to the source’s par-
ticle velocity, Ua. Its appearance in Eq. (1) underscores
the role of Reynolds stress as a transduction mechanism
between the two fields.

Broader interpretation of Eq. (1) is possible by defining
the streaming potential, h, such that u = −∂xh. Accord-
ingly, the Burgers streaming equation may be rewritten
as

∂th = ν ∂2
xh+ Λ

2 (∂xh)2 + F. (2)

When F is a zero-mean Gaussian white noise, Eq. (2) is
known as the Kardar-Parisi-Zhang (KPZ) equation [23].
The KPZ equation is a stochastic growth model for the
interfacial height of a body under random deposition. It
has been used for describing tumor growth and ballistic
deposition, among a variety of other processes [24–27].
Points of nondifferentiability in randomly “roughened”
height profiles produce sawtooth gradients characteris-
tic of Burgers shock front modeling [28]. In the present
setting, with deterministic forcing ∂xF = fR, Eq. (2) de-
scribes an axial buildup potential, the gradient of which
returns the streaming velocity. In absence of forcing and
with arbitrary initial profile, Eq. (2) generates solutions
that asymptotically evolve toward smooth steady profiles
under layered growth [23]. When subjected to forcing

via Reynolds stress, a combination of these character-
istics is observed in formation of the “shark fin” (i.e.,
rounded sawtooth) profile typifying axial Eckart stream-
ing (Fig. 1). Layered evolution of this profile is directly
analogous to the noted deposition processes.
Direct comparison of Eq. (1) with Eckart streaming-

driven transient and steady characterizations in Ka-
makura et al. [29] is made in Figs. 1 and 2. For solv-
ing the transient PDE Eq. (1), we employ the finite el-
ement method with the FEniCS Project suite of com-
ponents [30–37]. Kamakura’s modeling results were ob-
tained by numerical integration of the axisymmetric in-
compressible Navier-Stokes equations under a standard
field partition (cf. Ref. [38], p. 192). Kamakura’s acoustic
forcing is derived from sound pressure, where the latter
is modeled with the Khokhlov-Zabolotskaya-Kuznetsov
(KZK) equation [39–41]. In this study, we obtain the
continuous wave solution to the KZK equation with the
Fast Object-Oriented C++ Ultrasound Simulator (FO-
CUS) Matlab Toolbox [42–44].
Figure 1 subplots depict two scenarios. Kamakura’s

model (observable in either plot) employs Reynolds stress
derived from a nonlinear, diffractive KZK pressure field.
The model amplitude and shape poorly represent the
streaming profile over the leading half of the domain. For
circular plane transducers, the domain of validity of the
KZK equation is inherited from the quasi-optical approx-
imation upon which it is based. This begins at a distance
dv = a (k a)1/3/2 ≈ 2.6 cm from the source (cf. Ref. [41],
p. 50), where a is the transducer aperture diameter. The
spurious region in Kamakura’s model extends well into
the KZK equation domain of validity.
Results in Fig. 1(a) are obtained with Eq. (1) assum-

ing a linear, non-diffractive plane wave, inducing the
Reynolds stress fR(x) = (α/2) e−2αx, where the latter
is plotted in Fig. 1(b). The nondimensional attenuation
coefficient is α = κi/qλ. Agreement of the model with
Kamakura’s observations over the leading half of the do-
main is remarkable. In the latter domain half, however,
the model diverges from observations. In Fig. 1(c), we
show Eq. (1) driven by a Reynolds stress composed of
the linear, non-diffractive solution in the near field and
of the linear, diffractive solution—that is, the solution
to the KZK equation with nonlinearity parameter set to
zero—in the far field. The two forcing regimes are joined
by a spline with second-order smoothness, as shown in
Fig. 1(d), before being applied to the transient Burgers
streaming model. The root mean square relative error of
Kamakura’s model is 23 %, 18 %, and 15 %, at 5 s, 10 s,
and 20 s, respectively. For the concise Burgers model
with modified Reynolds stress, the values are 12 %, 5 %,
and 6 %, respectively.
Kamakura’s results seem to imply that by adjusting

his model’s near-source forcing conditions, better overall
agreement with the observations can be achieved. This
assessment is inaccurate: upstream forcing significantly
impacts downstream flow, while forcing near the distal
boundary negligibly affects streaming near the source.

fig:f01_2d_kama_transient
fig:f01_2d_kama_transient
fig:f01_2d_kama_transient
fig:f01_2d_kama_transient
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FIG. 1. Large-amplitude axial Eckart streaming. (a) Viscous Burgers streaming model with µ ≈ 0.018 and (b) Reynolds stress
derived from a linear, non-diffractive pressure field. (c) Viscous Burgers streaming model with µ ≈ 0.013 and (d) composite
Reynolds stress derived from a linear non-diffractive pressure field in the leading half of the domain and a linear diffractive
pressure field in the latter half of the domain. All other parameters follow from Ref. [29]. Steady profile evolution—which starts
at the source and proceeds monotonically toward the distal boundary—leads to spatially progressive profile dependence. Thus,
forcing in the leading section of the model of Ref. [29] cannot be altered without significantly perturbing model fidelity in the
latter domain half.

Streaming flow steadiness develops first near the source
and progresses monotonically toward the distal bound-
ary (see Fig. 2(b) and associated discussion). The modi-
fied Reynolds stress better aligns with the model physics,
since near-source, non-diffractive forcing is left intact
while forcing over the remainder of the domain is brought
into agreement with experimentally observed diffractive
enhancement. Hence, progressive spatial dependence as a
function of monotonic flow development provides strong
a posteriori support for veracity of the concise Burgers
model.

Streaming field transience is more thoroughly inves-
tigated in Fig. 2. In Fig. 2(a), diffractive enhancement
causes early departure of distal flow buildup, and this
enhancement persists to steady state. Near the source,
however, diffractive enhancement is transient and rapidly
decays toward the steady equivalent of a non-diffractively
forced flow. The steady flow profile develops in a layered
manner that is to date unexplored to our knowledge. The
origin of this phenomenon is revealed by the relationship
between Eqs. (1) and (2). At each point along the profile,
the flow velocity locally increases over time to a steady
value after a unique amount of elapsed time. Counterin-
tuitively, steady flow is first established near the dynamic
boundary. Over time, flow steadiness exponentially ad-

vances along the domain length before transitioning to
a nearly linear growth rate over the latter third of the
domain. Steady flow is last achieved close to the distal
boundary. Spatiotemporal monotonic steady state de-
velopment is directly evident in the unsteadiness map of
Fig. 2(b), where we define a steady front at 1% of maxi-
mum flow unsteadiness, ∂̃tũ ≈ 0.005 cm/s2 here.
Steady Riccati flow.—When analysing acoustofluidic

systems, one’s objective is often recovery of an equa-
tion for steady streaming. Setting the unsteady term
in Eq. (1) to zero, integrating over the domain, and rear-
ranging the result, we obtain Riccati’s equation [45] for
steady fast Eckart streaming

qλ (∂x u− ∂x u|x=0)− R

2 u2

= R

ηm

ˆ x

0
〈u(a)∂xu

(a)〉ξ,τ dx. (3)

The role of qλ = (k xs)−1 is revealed here. With qλ ∼ 1,
all flow features are selected and the full equation is ex-
pressed. However, with qλ � 1, only those flow features
with dimension xs much larger than the wavelength will
be retained. Since the viscous term is directly related to
the boundary layer, and the boundary layer thickness,
δv =

√
2µl/ρ0 ω, is much smaller than the wavelength

fig:f02_kama_trans_decay
fig:f02_kama_trans_decay
fig:f02_kama_trans_decay
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FIG. 2. Large-amplitude Eckart streaming from onset to steady state corresponding to the model in Fig. 1(c),(d). (a) The
Burgers streaming model accurately describes fundamental characteristics of transient growth of the phenomena from quiescent
conditions. (b) A spatiotemporal map of flow unsteadiness reveals a steady front (white solid line) that develops monotonically
due to uniform streaming flow layering. The steady front is defined as 1% of maximum flow unsteadiness, which is ∂̃tũ ≈
0.005 cm/s2 here.

(i.e., λ/δv � 1), the latter condition on qλ tends to
exclude the parenthetical term in Eq. (3). This corre-
sponds to loss of the distal boundary condition—that is,
the boundary layer is discarded—so that the resulting
algebraic expression can be solved to approximate bulk
flow. Evidently, then, bulk axial flow in such a scenario
is not dependent on the streaming Reynolds number. In-
deed, this property of bulk Eckart streaming leads to
weak self-similarity, as made evident in the following in-
viscid analysis and as observed experimentally [46].

When u(a) is a linear, non-diffractive acoustic wave,
a solution method exists for the steady viscous problem
that involves transforming Eq. (3) into a second order
linear equation [47]. The result is

uvisc = ∂x φ

cs φ
, (4a)

φ = Iβ(h) + cφI−β(h), (4b)

cφ = − Iβ+1(h0) + Iβ−1(h0)
I−(β+1)(h0) + I−(β−1)(h0) , (4c)

h = h0 e−αx, (4d)

where cs = −(2µ)−1, cf = −cs/2 η, β =
h0
√

(∂x uvisc|x=0 − cf )/cf , and h0 =
√

(cs cf )/α2. Here
I denotes the modified Bessel’s function of the first
kind. The steady source flow gradient, ∂x uvisc|x=0, has a
unique value corresponding to satisfaction of the homo-
geneous distal boundary condition.

Equation (4), plotted in the Fig. 1(a) inset, overlaps a
corresponding solution to the transient Burgers equation
as t ↑ ∞. When evaluating Eq. (4)—where arbitrary pre-
cision operation is desirable for computing linear combi-
nations of Bessel functions—we have employed the Ad-
vanpix Multiprecision Computing Matlab Toolbox [48].
In general, Eq. (4) generates a shark fin profile where flow
in the fluid bulk is determined primarily by inertia (and
hence, nonlinearity) and partially mediated by viscosity
(Fig. 1).
We obtain the steady, bulk solution with µ ≈ 0 (i.e.,

qλ ↓ 0 or R ↑ ∞), so that by inspection of Eq. (1)
ubulk = [ 1

2 η (1− exp(−2αx))]1/2. Its dimensional form is
written

ũbulk = Ua

√√√√ 1
2

∞∑
n=1

(2α x̃)n

n! , (5)

where α = κi k is the “true” absorption coefficient. If x̃ns
is a point sufficiently close to the source, then 2α x̃ns � 1
and

ũns = Ua
√
α x̃ns, (6)

describes near-source inviscid streaming. This is plotted
in Fig. 1, where one observes that for Kamakura’s obser-
vations, the flow profile follows an approximate square
root dependence over the leading half of the domain. We
deduce from Eq. (6) that, near the source, acoustic wave
to streaming flow transduction is linearly dependent on

fig:f01_2d_kama_transient
fig:f01_2d_kama_transient
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axial distance by a factor equivalent to the attenuation
coefficient, η(x̃ns) ≈ α x̃ns.
From Eq. (5), one determines the maximum achievable

streaming velocity:

max
∀

ũ = Ua/
√

2, (7)

which can evidently be realized in the limiting case
of an infinite attenuation coefficient—which itself is a
quadratic function of forcing frequency—or very far from
the source in the limiting case of an infinite flow domain.
The relevant value is indicated in Fig. 1. The design im-
plication of the foregoing results is that the only means of
achieving maximal velocity output under domain length
restriction is by increasing frequency. This is emphasized
by the fact that Eq. (5) attains its maximum as a Gaus-
sian function of increasing frequency. Interested readers
are directed to [see co-article], where a broad survey of
the applicability of Eq. (7) is undertaken, and effects of
forcing frequency on steady and transient flow character-
istics are explored in greater detail.

Dividing Eq. (7) through by Ua, squaring both sides,
and substituting the streaming conversion efficiency, we

arrive at

max
∀

(
|ũ(s)|
Ua

)2

= max
∀

ηm = 1
2 , (8)

so that the streaming law expressed by Eq. (7) may ap-
parently be interpreted as a fundamental limit on acous-
tic energy transduction efficiency of 50 %. Here our no-
tation implies a maximum “for all” possible system con-
figurations described by this model. This limit is entirely
independent of constitutive parameters.
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