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We propose a framework for modeling the temperature-dependent infrared optical and radiative properties
of metals exhibiting nonideal free-carrier dynamics. In order to do so, we derive a parsimonious model that
possesses both multivariate (in temperature and wavelength) and single variate (in wavelength) components.
The model is realized as the complex-valued relative permittivity, and is applicable to optically smooth media.
A procedure is outlined for regressing both components of the model under an appropriate set of physical
constraints that preclude superfluous degrees of freedom. The procedure is demonstrated by applying the
model to nickel, a transition metal of technical significance that possesses nontrivial valency. The resulting
model yields practically accurate results for eight data sets spanning four separate studies, representing the
approximate wavelength (λ) bandwidth between 1 and 16 µm, and the approximate temperature (T ) range
between 0 and 1400K. The proposed model framework retains phase information and can therefore be directly
interfaced with more complex Fresnel frameworks, such as those commonly used for modeling systematically
or randomly roughened surfaces.

I. INTRODUCTION

The interaction between matter and electromagnetic
radiation is a topic of great practical importance for both
theory- and design-driven applications. Scientist and en-
gineer alike benefit from models capable of reproducing
the properties of the material response to electromagnetic
forcing. Broadly speaking, these properties are divided
into two categories: optical and radiative. Optical prop-
erties are typically defined by complex-valued quantities,
such as the electric susceptibility or the refractive index,
that describe the manner in which the phase, amplitude,
and spectra of a given field are dispersed as it permeates
through and between various media. Surface radiative
properties, on the other hand, are typically realized in
terms of real-valued quantities that correspond to energy
balances at relevant interfaces. In either case, the prop-
erties generally vary both as a function of the radiative
wavelength and as a function of the temperature of the
medium.

Fresnel’s celebrated relations provide a theoretical cou-
pling between the dispersive properties of a given opti-
cally smooth medium and the properties governing its ra-
diant exchange with the surrounding environment. This
makes it so that one possible approach to effectively mod-
eling both sets of properties is to begin with a microscopic
differential equation of motion and then move toward a
continuous, complex-valued macroscopic Fourier descrip-
tion of the response. When the spectrum of interest is
the infrared and the medium being modeled is metal-
lic, the archetypical example of this methodology is the
model proposed by Drude over a century ago.1 The Drude
model pertains mainly to the infrared regime since the in-
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traband (i.e., free-carrier) response aligns, for most met-
als, approximately with infrared wavelengths. This is an
important regime for a wide range of applications, rang-
ing from the design of specialized metamaterials for heat
signature privacy2 to the modeling of infrared antennas
at nanoscale proportions.3 The need for thermophysical
models is also prevalent, with use cases including heat
shielding design,4 noncontact thermometry,5 and engine
component fabrication.6

In all but the most idealized scenarios, the Drude
model fails to completely account for experimental
observations.7–11 An everyday example of such behav-
ior can be found in the infrared responses of transition
metals with sufficiently complicated valence configura-
tions. Though, even the properties of materials that
are expected to represent “good” free-electron metals
(e.g., the monovalent noble metals) have been shown
to deviate from the Drude model results at very long
wavelengths.10,12 The matter of modeling these materials
is further complicated when one seeks to accurately de-
scribe thermophysical property variations. Since not all
wavelength-dependent dynamics are also temperature-
dependent, a practically useful thermophysical model
must be capable of reproducing the independent effects of
these contributions. Few models exist that are capable
of meeting these needs while also observing the princi-
ple of parsimony. Those that can be found are, for the
most part, defined over limited bandwidths and limited
temperature ranges—in the infrared, a typical spectral-
theromphysical response model will encompass a few mi-
crons and at most several hundred kelvins.
Consequently, it is desirable to obtain both a physically

motivated structure for describing the temperature- and
wavelength-dependent responses in these more complex
settings, and a method for realizing this model from a
consistent set of direct measurements. In this work, we
derive a model to accomplish this goal and illustrate its
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use by applying it to optical and radiative measurements
taken from nickel, a transition metal whose infrared re-
sponse exhibits complex dynamics. Nickel is also an ap-
propriate candidate for such an endeavor due to its nu-
merous and varied uses in relevant engineering contexts.

This work is organized as follows. In Sec. II, the mi-
croscopic Drude model is described under a Langevin de-
scription and the proposed thermophysical model is sub-
sequently derived by generalizing this description. The
properties of the anomalous model are investigated in de-
tail in Sec. II B. The subject of Sec. III is the application
of the model to the temperature-dependent infrared re-
sponse of nickel, which we have divided into Sec. III A
to describe the general procedure for deriving the model
parameters from experimental data and Sec. III B for the
analysis of the results. In Sec. IV we provide a brief con-
cluding discussion of the central elements of the study.

II. THEORY

Drude’s free-carrier transport model describes the re-
sponse of a bulk metallic solid to incident electromag-
metic radiation. It derives from a microscopic equation
of motion governing the behavior of a single carrier and
can be written as a Langevin equation:13,14

m∗
dv(t)
dt

+ ζ v(t) = e E(t) + e η(t), (1)

where v denotes the carrier velocity for a carrier with
effective mass m∗, ζ = m∗/τc is a phenomenlogical
damping associated with velocity-randomizing scattering
events occurring at an average rate 1/τc, and e denotes
the elementary charge. Here, E is the ordered local field
and the noise force has been modeled in terms of a ran-
dom field noise, η, that is zero-mean and ergodic.
The macroscopic equation of motion is then obtained

by taking the ensemble average 〈 · 〉 of (1), leading to

τc
dj(t)
dt

+ j(t) = nd e
2 τc

m∗
E(t), (2)

where the current density j = nd e 〈v〉 describes the aver-
age charge carrier motion in a material having a carrier
number density nd, E = 〈E〉, and 〈e η〉 = 0. The conduc-
tivity is obtained under a Fourier transform of (2) and
may be written in wavelength-dependent form by noting
that ω = 2π c0/λ. This leads to the unbound harmonic
response

σd(λ) = σγ λ

λ− i λc
, (3)

where we have defined the characteristic wavelength
λc = 2π c0 τc, with c0 being the speed of light in a
vacuum. The DC conductivity is then limω↓0 σd(ω) =
limλ↑∞ σd(λ) = σγ = nd e

2τc/m
∗.

The Drude susceptibility follows from the usual
transform,15 leading to

χd(λ) = − λ2

2π c0 ε0

(
σγ

i λ+ λc

)
, (4)

where ε0 is the vacuum permittivity.
The temperature-dependent model expands upon our

previous study for the description of anomalous carrier
dynamics over broad infrared bandwidths.12 Here the
term “anomalous” refers to intraband dynamics that sys-
tematically depart from the ideal free electron profile.
The anomalous model interprets such departures as the
addition of a structured component to the otherwise ran-
dom perturbations in (1):

η̃(t) = F

(
E(t), τf

dE(t)
dt

)
+ η(t), (5)

where the parameter τf defines a characteristic field re-
laxation period. A zero-order field effect is already ac-
counted for in Drude’s model, so that the most basic
modification to the local field fluctuation is one that
considers the Markovian relaxation F = τf dE/dt. This
modification can be generalized, however, to one that ac-
counts for a field damping memory:

η̃(t) = lim
t0↓−∞

ˆ t

t0

K(t− s) dE(s)
ds

ds+ η(t), (6)

which assumes that a long enough time has passed since
the introduction of the field so that the distribution has
completely decorrelated from its initial state. Here K is
a dimensionless function known as the memory kernel.
The choice of K is dictated by the requirement that

the model remain amenable to physically meaningful in-
terpretation while also accurately describing the exper-
imental observations. These needs are balanced, how-
ever, by the desire for a low-dimensional description of
the anomalous behaviors. An appropriate choice for the
memory kernel is therefore

K(t) = (τf/ t)µ

Γ(1− µ) , (7)

where Γ( · ) is the gamma (generalized factorial) function
and µ ∈ [0, 1). The kernel (7) imparts a power-law mem-
ory decay. When µ = 0, the memory is said to be perfect
(this is analogous to the Drude model). For µ > 0, mem-
ory of field perturbations decays asymptotically with a
decay strength dependent on the value of µ. As µ → 1,
the limiting behavior of (7) in (6) is such that memory
kernel behaves as the IID distribution δ(t), which implies
the previously noted Markovian relaxation.
The memory kernel given by (7) is such that in the

stationary limit of (6), one arrives at the causal convolu-
tion:

lim
t0↓−∞

K(t)∗ dE(t)
dt

= lim
t↑∞

τf
dµE(t)
dtµ

, (8)
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where the notation on the right hand side implies either
of the Riemann-Liouville or Caputo fractional derivative
definitions.16 In Appendix A, we show that a more gen-
eral approach can be taken with the memory kernel that
nevertheless leads to (8).

By combining (6), (7), and (8), and then inserting the
result into (1), a temporally nonlocal macroscopic carrier
transport model is obtained:

τc
dj(t)
dt

+ j(t) =
(
nd e

2 τc
m∗

)(
E(t) + τµf

dµE(t)
dtµ

)
. (9)

The result is a simplified analog to the hydrodynamic
equation of motion governing the momentum of a small
particle within harmonic Stokes flow.17 This scenario
leads to the Basset memory drag, which is a force term
that arises as the half derivative of the disturbance flow.

Memory operators like the one employed in (9) are
useful for the description of certain high-order semi-
stochastic systems due to their intrinsic infinite dimen-
sionality. In such systems, they provide a linear differen-
tial description of dynamics that may otherwise represent
non-differentiable processes. It has also been demon-
strated that operators of this type are consistent with
a Hamiltonian description of emergent damping effects,
whereas this is not generally the case for the more con-
ventional Markov approximation.18 These behaviors are
commonly found in systems that are subject to anoma-
lous diffusion.17,19,20 Accordingly, the generalized fluctu-
ating field of (6) with the kernel (7) may be understood
as modeling a non-Markovian temporal diffusion profile
induced by elements of system disorder.

In this work, we extend the carrier transport model
of (9) to account for temperature effects by considering
a temperature-dependent conductivity informed, e.g., by
the solution to the Boltzmann equation in the Relaxation
Time Approximation (BRTA):14,21

σγ(T ) = nd e
2

m∗
τc(T ), (10)

where the temperature-dependence of the relaxation time
derives from the collision integral in the BRTA equation.
In an ideal lattice, the theory predicts τc ∝ T−5 in the
low temperature regime, T/ΘT << 1 (ΘT is the Debye
temperature at T ). When T/ΘT >> 1, an asymptotic
dependence of τc ∝ T−1 is expected. Since we are in-
terested in a model yielding a general empirical fidelity
over a regime that includes intermediate temperatures,
we obtain the dependence in (10) for our model directly
from suitable experimental data.

In this work, we refer to (10) as the photonic conduc-
tivity and to its inverse as the photonic resistivity. This is
done since the DC conductivity one normally associates
with this value may not be equivalent to the regressed
parameter in the Drude model (3) when the metal is not
well described by the free-electron model at longer wave-
lengths. Nickel—which forms the objective of the model-
ing study undertaken in Sec. III—is a particularly strong

example of this anomaly, and this has been frequently
noted in the historical7 and recent22 literature.
We account for the possibility of macroscopic anoma-

lous carrier dynamics that behave independently from
the bulk Drude behavior with a single effective carrier
and an associated relaxation time that is altered in the
independent regimes. This is achieved by introducing the
dimensionless linear scaling α(T ) such that τa = α τc.
This leads to

τc(T ) djd(t)
dt

+ jd(t) = nd e
2

m∗
τc(T )E(t), (11a)

τa(T ) dja(t)
dt

+ ja(t) = nd e
2

m∗
τa(T ) τµf

dµE(t)
dtµ

, (11b)

where the total current density is taken to be the sta-
tionary sum of the Drude component and the anomalous
component. The model described in (9) and its general-
ization to distinct regimes in (11) may be interpreted as
a type of “two-carrier” model, although with the excep-
tion that the model actually accounts for a single carrier
whose dynamics are modified in the presence of a disor-
dered local field.
The concept of a two-carrier model was first introduced

by Drude in 190023–25 before establishing his more well-
known model four years later1 in response to the pre-
dominant theoretical doctrine at the time. Five decades
subsequent, Roberts reassessed Drude’s original formula-
tion for the purposes of modeling more complex dynamics
typically observed in metals that are not well described
by the free-electron model.7 Since that time, the concept
of a multi-carrier model has been leveraged in a number
of contexts to accurately capture the complex optical and
radiative responses for a wide range of media.4,26–28
One notable realization of the two-carrier model that

bears relevance to the present study is that described by
Nagel and Schnatterly for modeling the effects of highly
disordered regimes of electron dynamics.8 In that study,
the authors describe a single effective carrier type having
a time constant that becomes modified in regions of high
disorder. In our model, we further allow for this disor-
der to be driven by field oscillations (i.e., when µ > 0),
in which case the anomalous response vanishes in the
long-wavelength limit where the Drude component is ex-
pected to dominate (this is substantiated in the model
analysis to follow). A similar behavior is observed in
the previously noted hydrodynamic analog, where the
Basset force gives way to a pure Stokes drag in the low-
frequency limit.17 Setting E(t) = E0 = constant, this be-
havior is recovered from (9) and (11b) in the stationary
setting. Furthermore, Nagel and Schnatterly have con-
jectured that the disordered component of their model
should be independent of temperature. In advance of
the results presented further on, we note that this is pre-
cisely the behavior we have observed empirically in our
study.
The transport model of (11) leads to the wavelength-

dependent susceptibility model
χφ(λ, T ) = χd(λ, T ) + χa(λ), (12)
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where φ denotes free-carrier dynamics and we have pre-
emptively applied the previously noted temperature-
independence of the disordered carrier dynamics, which
arises under the empirical observation that α(T ) τc(T ) =
constant. The anomalous susceptibility is

χa(λ) = −(−i)µ λ2

2π c0 ε0

(
λf
λ

)µ(
σa

i λ+ λa

)
, (13a)

= − λ2 σa
2π c0 ε0

(
λf
λ

)µ(
fr(µ)− i fi(µ)

i λ+ λa

)
, (13b)

where we recall that the time constant in anomalous
regimes is τa = α τc, so that λa = 2π c0 τa and σa =
nd e

2 τa/m
∗ define the anomalous relaxation wavelength

and anomalous conductivity contribution, respectively.
Here we have defined fr(µ) = cos(µπ/2) and fi(µ) =

sin(µπ/2), so that√
fr(µ)2 + fi(µ)2 = 1. (14)

The numerator in the second set of parentheses in (13b)
demonstrates that one of the effects of the parameter µ
is the bifurcation of the anomalous term. The result in
(14) shows that the bifurcation produces a complimen-
tary partition of the strengths of the two resulting terms.
This is to say that at any fixed frequency, the ratio of
the amplitude of these two terms as a function of µ is
|fr(µ)/fi(µ)|, with the total contribution constrained by
(14). The energy partitioning property of nonlocal oper-
ators in a stationary frequency domain setting has been
rigorously investigated in our recent study.29
Decomposing the proposed model (12) into its real and

imaginary components χφ = χ′φ + i χ′′φ and appealing to
the relation ε = 1 + χ = 1 + χφ +

∑
χβ ,30 where the χβ

are the contributions from bound states, one has for the
temperature-dependent relative permittivity

ε′(λ, T ) = ε′β(λ, T )− λ2 λc(T )
2π c0 ε0

(
σγ(T )

λ2 + λc(T )2

)
+ λ3 (λf/λ)µ

2π c0 ε0

(
σa fi(µ)
λ2 + λ2

a

)
− λ2 λa (λf/λ)µ

2π c0 ε0

(
σa fr(µ)
λ2 + λ2

a

)
, (15a)

ε′′(λ, T ) = ε′′β(λ, T ) + λ3

2π c0 ε0

(
σγ(T )

λ2 + λc(T )2

)
+ λ3 (λf/λ)µ

2π c0 ε0

(
σa fr(µ)
λ2 + λ2

a

)
+ λ2 λa (λf/λ)µ

2π c0 ε0

(
σa fi(µ)
λ2 + λ2

a

)
, (15b)

where σγ/λc = σa/λa = constant, which are physical
constraints that we observe in order to avoid overfitting
experimental data during model development. Though
this constraint was not directly enforced in Roberts’ re-
visitation of Drude’s two-carrier model,7 he did note its
presence in the empirical fits of his subsequent thermo-
physical study31 and leveraged it there for the purposes
of extrapolating parameter regression to higher temper-
ature data.

The bound state contribution to expressions (15) is

εβ(λ, T ) = 1 +
∑
β

χβ(λ, T ). (16)

Generally, one models the interband dynamics with
an appropriately motivated bound harmonic oscillator
definition.11 When there is a sufficient decoupling of
the intraband dynamics from the interband dynamics—
typically, when the latter have resonances at smaller-
than-visible wavelengths—the bound oscillations remain
approximately in phase with the incident field. In this
case, one may take the long-wavelength approximation

εc = lim
λ↑∞

εβ(λ, T ), (17)

where the core contribution εc is a real constant in the
limit due to negligible absorption. The approximation
(17) also assumes that the medium surface is free of

dielectric layers (e.g., oxidation), since, in addition to
imparting a characteristic surface roughness, such layers
admit temperature- and wavelength-dependent phononic
absorption that must then be separately modeled as in
(16).

A. Optical and Radiative Properties of Metals in the
Infrared

The radiative properties of an optically smooth ab-
sorbing medium in response to an incident homogeneous
electromagnetic plane wave may be computed if the com-
plex index of refraction is known:32

ñ = n+ i k, (18)

where n is the dispersive index and k is the absorptive
index. The complex index is related to the relative per-
mittivity by ñ =

√
ε, so that

n =
√

1
2 (|ε|+ ε′), (19a)

k =
√

1
2 (|ε| − ε′), (19b)

with |( · )| being the complex modulus of ( · ). The reflec-
tivity is the ratio of the reflected radiant energy to the
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incoming radiant energy. It can therefore be expressed
in terms of the incident field E(i) as

ρ =
∣∣E(i)

p

∣∣2 ρp +
∣∣E(i)

s

∣∣2 ρs∣∣E(i)
p

∣∣2 +
∣∣E(i)

s

∣∣2 , (20)

where ( · )p and ( · )s denote components that are parallel
and perpendicular to the plane of incidence, respectively.
The polar reflectivity components represent the squared
amplitudes of the corresponding complex Fresnel reflec-
tion coefficients:

ρp =
∣∣rp∣∣2, (21a)

ρs =
∣∣rs∣∣2. (21b)

The transmitted energy can then be obtained from an
energy balance at the interface: τ = 1−ρ, τs = 1−ρs, and
τp = 1− ρp. For radiation emitted from a non-absorbing
medium with ñ1 = n1 onto an absorbing medium with
ñ2 = n2 + i k2, the reflection coefficients are determined
by the geometric relations governing the magnitudes of
the incoming and outgoing fields. The relations are a
result of applying the phase-matching requirement to the
boundary conditions at the interface.

If the absorbing medium is a metallic conductor and
the spectrum of interest is the infrared, then above some
wavelength one generally has n2 >> n1 and k2 >> n1.
In such a regime, geometric considerations lead to the
approximations

rp = n1 − ñ2 cos θi
n1 + ñ2 cos θi

, (22a)

rs = n1 cos θi − ñ2

n1 cos θi + ñ2
, (22b)

where θi is the polar angle of incidence, and where
the transmission coefficients can be obtained by simi-
lar means. For the unpolarized electromagnetic radiation
typically emitted in everyday situations (e.g., solar radia-
tion, flames, and lamps), one has the relation E(i)

p = E
(i)
s ,

so that (20) reduces to the simple average of the s- and p-
polarized components. If the absorbing metal is optically
thick, then

α(λ, T, θi, ψi) = 1− ρ(λ, T, θi, ψi), (23)

where ψi is the azimuthal angle of incidence and

α(λ, T, θi, ψi) = ε(λ, T, θi, ψi), (24)

in accordance with Kirchhoff’s law. For radiation emit-
ted from free space with n1 = 1 and having an angle of
incidence θi = 0, we arrive at the familiar expression for
the spectral normal emissivity,

εn = 4n2

(n2 + 1)2 + k2
2
, (25)

which is valid under the preceding assumptions along any
spectral band. Combining (15) with (19) and the various
other foregoing relations—or with any of their suitable
generalizations—one obtains the temperature-dependent
optical and radiative properties of the medium.

B. Analysis of the Anomalous Component

Before embarking on a more involved analysis of the
properties of the proposed model, we note two features of
import related to consistency with the underlying semi-
classical theory. The first of these is that in the limit of
instantaneously diffusive field perturbations, the charac-
teristic length of field disorder approaches zero λf → 0
and one recovers the Drude model from (15). The sec-
ond important feature is that in the DC limit (λ → ∞)
where the contribution from the anomalous term van-
ishes, the conductivity model associated with (13) re-
turns σγ, which is also in agreement with the Drude
model.
In order to provide a basis for the analysis and inter-

pretation of non-integer order differential dynamics in a
stationary frequency domain setting, we have recently de-
scribed a generalized spectroscopic analysis framework.29
The framework is derived under the formalism of vari-
able order calculus. It allows one to express the linear
response of a given system as a variable order transfer
function. Within the context of the present discussion,
this leads to the frequency-dependent expression

χφ(ω) =
ω2
p

γ(ω) (−i ω)q(ω) , (26)

with ω = 2π c0 λ
−1 and where ωp =

√
σγ/ε0 τc =√

nd e2/m∗ ε0 is the plasma frequency. We refer to the
parameters

q(ω) = 2
π
atan2(−Z ′′(ω), Z ′(ω)), (27a)

γ(ω) = ω−q(ω)|Z(ω)|, (27b)

as the variable order coordinates (VOCs). They are ex-
pressed in terms of Z = Z ′ + i Z ′′, where Z = ω2

p/χφ.
Here atan2 is the quadrant-preserving arctangent func-
tion. The parameter q is called the generalized derivative
order (GDO). The GDO is, in particular, useful for char-
acterizing the dynamical order of the system in response
to a given wavelength of radiative forcing.
In this work, we find the GDO useful for analyzing

the influence of the anomalous susceptibility component
(13). Specifically, we note that there exist two distinct
regimes of behavior depending on the value of µ. The
first regime is that corresponding to µ = 0 and may
be deduced directly from (13): the model reduces to a
simple Drude term. The second regime is that defined
by µ ∈ (0, 1], for which the anomalous term exhibits a
quasi-bound state behavior—that is, it interpolates free
and bound particle dynamics. These points are further
illustrated by the plots in Fig. 1, which demonstrate the
separate and combined (superposed) effects of the model
components. The model represented in the plots is that
obtained from (13) for nickel. In each plot, the model
is evaluated over the infrared band λ ∈ [1, 16]µm for
T = 4K and presented alongside experimental data ob-
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tained at the same temperature. Plot 1(a) shows the sus-
ceptibility and plot 1(c) shows the corresponding GDO.
The memory decay parameter associated with the model
in the plots is µ = 0.593.
A number of important conclusions can be drawn from

the plots. First, it should be noted that free-carrier dy-
namics are those taking place independent of any 0-order
(Hooke’s law) binding forces, so that we expect the in-
frared dynamics to be defined on the viscoinertial regime
q ∈ [1, 2] in plot 1(b). This is precisely the behavior of
the data and the model. The Drude component is also
necessarily restricted to this regime, since it derives ex-
plicitly from a differential force balance expressed in this
domain. The anomalous component, on the other hand,
exits the viscoinertial regime at λ ≈ 1.78µm and enters
the viscoelastic regime q ∈ [0, 1]. This is indicative of
the previously noted quasi-bound state behavior. It is
also made evident by inspection of the GDO plot that a
global characteristic of the anomalous term is to apply
a dissipative correction—that is, away from the conser-
vative inertial boundary toward the dissipative viscous
boundary—to the pure Drude component.

In the susceptibility plot 1(a), the Drude component is
observed to play the dominant role at longer wavelengths,
while the anomalous component contributes more sub-
stantially at shorter wavelengths (i.e., the disorder-based
component is driven by higher frequency field oscilla-
tions). In the viscoelastic regime, the real part of the
anomalous susceptibility acquires a sign inversion which
reduces the amplitude of the real Drude susceptibility
to arrive at the total in-phase modeled response. The
appropriate interpretation for this behavior is that of
a disorder-based screening applied to the in-phase com-
ponent of the ideal free-electron dynamics, the effect of
which is primarily evident at intermediate wavelengths.
With respect to nickel, one may also interpret this as
characterizing the activation of the lower lying d-orbital
valencies at smaller wavelengths. Plots 1(b) and 1(d)
depict the complex refractive index and the spectral
normal emissivity, respectively. The temperature- and
wavelength-dependent model used to generate the pro-
files is the same that we describe in detail in Sec. III. The
model accurately reproduces emissivity profiles at eight
temperatures spanning four distinct studies, so that its
capacity for explaining the experimental data is not lim-
ited to the results portrayed in Fig. 1.

The significance of the tunable field memory decay
is more completely characterized in Fig. 2, where we
have once more plotted the susceptibility and GDO
of the total model (12) at T = 4K for the values
µ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. The wavelength range in this
plot has been extended to the far infrared. In the model,
the characteristic wavelengths of the two terms are re-
lated by λ1 = αλ2, with α = 0.0588 indicating over
an order of magnitude separation between the time con-
stants of the differing terms.

When µ = 0, the model is comprised of two super-
posed, dynamically similar Drude terms. In this case,

the GDO has a qualitative character similar to that of a
single Drude term: in the long-wavelength limit, the ef-
fective mass has an infinitely long time to equilibrate to
the field, so that only the damping effects are important
and q → 1 (in the case of an interband oscillator, this
low-frequency asymptotic would instead be q → 0 due to
the Hooke’s law term). At smaller wavelengths, Newton’s
law inertial effects dominate the high-frequency particle-
field interactions, so that q → 2. As µ is increased, indi-
cating that the memory of the anomalous term acquires
a decaying character due to increased field disorder, a
secondary dissipative minimum develops in the GDO at
λ ≈ 1µm. This induces an inflection in the profile of
the absorptive susceptibility component. Due to the rel-
atively large separation in the timescales of the model
components, variation in µ has little effect on the long-
wavelength performance of the model, which is primarily
determined by the more well-ordered and temperature-
dependent Drude response, as discussed further on.

III. APPLICATION TO NICKEL

We demonstrate the utility of the proposed model by
applying it to nickel, a metal that is encountered in a
wide variety of common applications. Nickel is an ap-
propriate choice for the present study due its multiva-
lent electron configuration [Ar] 3d9 4s1, which gives rise
to an augmented absorption profile—that is, with re-
spect to the predictions of the free electron model—in
the small-wavelength portion of the intraband regime. In
this regime, band theory predicts activation of valencies
in the lower lying d subshell.33,35

The data, analysis, and results presented here expand
considerably on those presented in our earlier preliminary
investigation.36 Data for the emissivity of nickel is com-
piled from three separate studies.4,33,37 The data are de-
fined over the approximate spectrum λ ∈ [1, 16]µm and
consist of measurements taken at seven temperatures,
T = {4, 305, 583, 722, 1083, 1238, 1403}K. The high pu-
rity, polished samples represent an ideal Fresnel surface
in the sense that models derived from a set of physically
meaningful constraint equations should be capable of a
smooth, continuous description of the data. Such mod-
els can then be directly interfaced with more elaborate
Fresnel frameworks one typically uses when modeling, for
example, rough surfaces (e.g., statistical optics38).

A. Implementation

Development of a mid-infrared wavelength- and
temperature-dependent emissivity model for nickel is
achieved principally in two steps: (i) the permittivity
model of (15) is fit independently to the relevant data un-
der the established physical constraints, and (ii) a func-
tional form for the temperature-dependent parameters is
established from the independent fits. Replacing the in-
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(a) (b)

(c) (d)

FIG. 1. Model component analysis at T = 4K. In (a) and (c): complete model (solid lines), Drude component (long-dashed
lines), anomalous component (short-dashed lines), and data (markers).33,34 In (a): | − χ′| (dark, blue) and χ′′ (light, orange).
In (b): n (dark, blue) and k (light, orange). The overall effect of the anomalous component in (c) is to apply a dissipative
correction to the pure Drude response. The anomalous term leaves the viscoinertial (i.e., free-carrier) regime defined by
q ∈ [1, 2] (light region) and enters the viscoelastic regime q ∈ [0, 1] (dark region). This indicates the existence of a quasi-
bound state character and explains the attenuated amplitudes of both the real and imaginary parts of the anomalous term
at longer wavelengths, where the Drude term dominates. In the viscoelastic regime, the anomalous susceptibility applies a
positive correction to the negative real Drude susceptibility. This represents a disorder-based screening of the overall in-phase
response. For nickel, the augmentation at lower energies characterizes the contribution due to activation of lower lying d-orbital
valencies. As demonstrated in the results section of this work, the model used to produce the T = 4K profiles in these plots
accurately reproduces the nickel emissivity data for eight temperatures spanning four distinct studies using only temperature
and wavelength as inputs, so that the results implied here generalize beyond the T = 4K measurements.

dependently fit components with the functional material
parameters then constitutes a decoupling of the model
from the data. Ideally, the parameters for our model
would be obtained by purely systematic means. To do so,
however, would mean disregarding certain implicit and
rather obvious modifications to the procedure that are
made evident by heuristic analyses. We describe these
modifications presently.

Within a fixed model structure, the task of repro-
ducing emissivity data taken at higher temperatures is
more robust to variation in the temperature-independent
components—that is, those characterizing the field per-
turbations as well as the fixed-ratio constraints we have
previous established. In order to reduce parametric un-
certainty, we therefore include the requirement that the
data used to obtain these quantities should sufficiently
exercise the full complexity of the model. For this reason,

we have obtained these values using the data at the low-
est two temperatures (which also have the greatest band-
width). Physically, this is tantamount to the idea that
the temperature-independent parameters can be more ac-
curately determined in the absence of phononic lattice
distortion imposed at higher temperatures.
Throughout the procedure, we fix the core contribu-

tion to εc = 4.396. This was obtained from a model
in our previous study,11 where the interband dynamics
were realized in terms of our previously derived bound
oscillator model.39 Application of (17) to that model
yields the constant contribution, which represents contri-
butions from bound states having resonant wavelengths
much smaller than the smallest wavelength of the mod-
eled band, λ = 1µm. The temperature-dependent pa-
rameters are determined independently from the respec-
tive data sets at each temperature. This is done after first
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(a)

(b)

FIG. 2. Effects of the tunable memory decay strength. In plot
(a): | − χ′| (dashed) and χ′′ (solid). In both plots: light to
dark coloring indicates increasing values of the decay strength,
µ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. When µ = 0, the corresponding
curve in (b) is similar to that of a pure Drude profile: the high-
frequency response is dominated by q = 2 (Newton’s law) in-
ertial effects and the low-frequency response is dominated by
q = 1 viscous effects (since the effective mass has sufficient
time to equilibrate and binding forces are absent). Increas-
ing the value of µ produces a second dissipative minimum in
q at roughly 1µm, which corresponds to the anomalous aug-
mentation of the absorption profile and results from increased
damping effects in the presence of greater field disorder.

determining and then fixing the resulting temperature-
independent model constraints. Subsequent to these
steps, it was discovered that

α(T )σγ(T ) = nd e
2

m∗
α(T ) τc(T ) ≈ constant. (28)

That is, by permitting thermal-dependence of the time
constant scaling law, optimal values for this parameter
regressed over seven independent data sets suggest the
temperature-independent anomalous time constant, τa =
α τc.

It’s remarkable that Roberts observed similar behav-
iors in his five-term (three unbound terms, two bound
terms) model despite the fact that his model was ob-
tained by “manual fitting” methods over the more re-
stricted NIR range λ ∈ [0.365, 2.65]µm included in his
measurements.31 In his study, Roberts was unable to
uniquely determine the parameters in the constant ratio
σγ/λc and was therefore forced to assume theoretical pre-

dictions for the DC electrical conductivity. Fortunately,
we have at our disposal several resources that allow us
to more fully characterize this behavior entirely in terms
of the optical response. These include data obtained at
helium temperatures (T = 4K), data that exhaust the
full range of mid-infrared wavelengths, and modern non-
linear programming techniques that make it possible to
ensure the optimality of our fits (inclusive of any desired
physical constraints). Enforcing the constraint implied
by (28) and then once more optimizing the independent
fits yields the temperature-conductivity pairings at each
experimental temperature. The determination of these
pairings represents the completion of step (i) in the model
application procedure.
Step (ii) involves regressing the temperature-

dependent parameters in order to arrive at a sensible
form of the corresponding material function(s). The
only remaining temperature-dependent parameter is the
photonic conductivity, which has been expressed as the
photonic resistivity ργ = 1/σγ since the latter can be
more concisely formulated in terms of the underlying
physics:

ργ(T ) = ρr + ρT (T ). (29)

The appropriateness of this form derives from the fact
that the relaxation time is inversely proportional to the
linearized collision integral in the BRTA, so that this
proportionality extends to a linear superposition of in-
dependent scattering processes.14 This approximation is
commonly known as Matthiessen’s rule. In real materials
having lattice defects and impurities, one has a residual
resistivity ρr > 0 that is independent of temperature.
The temperature-dependent contribution ρT arises due
to electron-phonon coupling, with the phononic lattice
response being directly dependent on temperature. The
temperature-dependent resistivity is often expressed by
combining Matthiessen’s rule with the Bloch-Gruüneisen
integral. For the data used in this study, we have found
it useful to express the power-law dependence

ρT (T ) = ρref (T/Tref)k, (30)

where ρref = 0.092µohm·m is the resistivity returned at
the reference temperature Tref = 293K, and k = 1.601.
The corresponding residual resistivity is ρr = 0.099. The
power law (30), realized in terms of the foregoing val-
ues, grants closure to the application procedure and to
the model since it is in good agreement with correlations
reported in the literature for nickel.40

B. Analysis of Results

The main result of this work is the seven-degrees-of-
freedom model obtained by combining (15), (29), and
(30) with the temperature-independent parameters from
Tbl. I. Coupling this result with the relevant theory from
Sec.IIA then yields a suite of closed-form expressions
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TABLE I. Parameters for the proposed nickel permittiv-
ity model. The permittivity is obtained by combining
Eqs. (12),(15) –(17), (29), and (30). Resistivity units are
µohm·meter. Wavelength units of wavelength are µm. Both
εβ and µ are dimensionless. The scaling constant κ =
nd e

2/ 2π c0 ε0 m
∗, when combined with the model constraints

σγ / λc = σa / λa = κ, yields the remaining parameters.

Drude Anomalous
εβ ρr ρref k ρa λf µ κ

4.396 0.099 0.092 1.601 1.684 2.808 0.593 0.248

that provide a full characterization of the temperature-
dependent radiative and optical responses of nickel over
the infrared band λ ∈ [1, 16]µm and for temperatures
over the approximate range T ∈ [0, 1400]K.
Examples of closed-form, temperature-dependent spec-

tral emissivity models for nickel are sparsely represented
in the literature. Models that accomplish this task
over the ranges of temperatures and wavelengths inves-
tigated here appear to be virtually nonexistent. One
model that attempts to achieve this goal is the spec-
tral normal emissivity correlation provided by Edwards
and Bayard de Volo,41 which we abbreviate as the EBdV
model. The EBdV model was derived by asymptotic
analysis of the Drude-Roberts two-carrier model and
applied directly to emissivity measurements taken at
T = {305, 583, 722}K.4 Since these measurements con-
stitute three of the data sets used in the present study,
we expect their model to yield a competitive fidelity for
at least these three sets. The performance of each model
is investigated graphically in Fig. 3. The corresponding
error associated with each model is quantified in Tbl. II
for the respective data sets.

TABLE II. Comparison of modeling error for the
temperature-dependent emissivity models in the plots
of Fig. 3.

root mean square relative error [% ]
4K 305K 583K 722K 1083K 1238K 1403K

EBdV4 19.8 5.0 6.3 4.8 9.2 8.2 10.2
proposed 3.0 4.4 5.9 6.5 3.9 3.5 1.7

The EBdV model performs approximately as expected,
yielding meaningful results only for the data from which
the model parameters were originally regressed. Regard-
less, the bulk error metrics in Tbl. II—as well as the
point-by-point relative residuals in Fig. 3—indicate that
the proposed model yields a substantial improvement for
six of the seven data sets. With respect to each of the he-
lium temperature data, the fidelity of the proposed model

yields roughly an order of magnitude improvement over
the EBdV model.
It is possible that the performance of the EBdV model

might be somewhat improved by regressing the model
structure over all of the data sets included here. However,
the relative residuals accumulated at very low (very high)
temperatures and long (short) wavelengths will remain
mostly unaffected. At higher temperatures, this is due
to the artificial imposition of a cross point (or X-point),
which causes large residuals at small wavelengths where
the model is unnaturally forced toward an intersecting
value. An X-point is the wavelength-emissivity pairing
ε(λX , T ) in the spectral thermophysical emissivity of the
medium such that

∂ε(λ, T )
∂T

∣∣∣∣
λ=λX

≈ 0 ∀T. (31)

The nonexistence of “true” X-points has been discussed
at length within a band-theoretical framework.42 In fact,
these “points” are more accurately described as finite
regions and are related to nearly invariant transitions
within small specific wavelength ranges resulting in ap-
proximately intersecting emissivity isotherms. That is,
these regions occur somewhat by happenstance as a re-
sult of the specific lattice (and defect) composition (and
resulting band structure) rather than by any distinct
mechanism.42,43 As such, these regions, if observed in the
model, should ideally arise naturally from the model me-
chanics rather than by explicit imposition. As evidenced
in Fig. 3, this behavior is more naturally expressed in the
proposed model, where λX ≈ 1.5µm.
At very low temperatures (i.e., much lower than the

Debye temperature), the large accumulation of error in
the EBdV model is due to the embedded assumption of
an ideal lattice, which does not account for the residual
resistivity that is present in real materials. Due to the
fact that the EBdV model is realized as a normal emis-
sivity model, it lacks phase information and is therefore
also incapable of providing estimates for the spectral di-
rectional emissivity. We expand upon our foregoing anal-
ysis by plotting in Fig. 4 the surface representing the nor-
mal spectral reflectivity generated by the proposed model
over the valid temperature range.
The nontrivial structure of the multivariate model re-

flectivity is made immediately apparent by comparison
of the low- and high-temperature profiles, and by exam-
ination of the interpolatory surface marrying these ex-
tremes. Inspection of the plot reveals that the profile
is fundamentally generated by two asymptotic behav-
iors that are joined at low temperatures by a corner-
wavelength of roughly 6µm. As the temperature is in-
creased, the primary effect of the temperature-dependent
lattice distortion is to apply a smoothing effect about
the corner-wavelength that leads, at higher temperatures,
to a semiparabolic spectral reflectivity profile. Included
in the plot are experimental values for the spectral nor-
mal reflectivity computed from the ambient temperature
(we assume T = 294K) measurements of Ordal et al.,44
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(a) (b)

FIG. 3. Comparison of temperature-dependent spectral emissivity models. In plot (a): the model of Edwards and Bayard
de Volo. In plot (b): the spectral normal emissivity realized by combining the proposed model in Eqs. (15) –(17), (29), and
(30) with the optical and radiative relations in Eqs. (19) and (25). Parameters for the proposed model are given in Tbl. I. The
model in plot (a) was originally developed for and applied to the data for T = {305, 583, 722}K.4,41 The relative error for the
proposed model in plot (b) is everywhere less than 10%.

FIG. 4. Multivariate reflectivity of nickel. The surface is gen-
erated by combining the proposed seven-degrees-of-freedom
model in Eqs. (15) –(17), (29), and (30) with the optical
and radiative relations in Eqs. (19), (23), and (25). Pa-
rameters for the proposed model are given in Tbl. I. Black
markers indicate data from which the model parameters were
regressed.4,33,37 Gray markers indicate reflectivity computed
from the complex-valued optical measurements obtained by
Ordal et al.44

which are available over a broadband infrared regime
λ ∈ [1, 286]µm. Although the procedure used to prepare

the sample (if any) is not discussed in that study, we can
at least confirm that the sample purity is commensurate
with the previously established guidelines. As demon-
strated in the figure, the model accurately reproduces
the reflectivity profile over the entire spectral range.

We bring our analysis full circle in Fig. 5, where the
model has been used to generate an estimate of the
complex-valued material properties at T = 294K. We
note that, aside from the T = 4K data, all data used to
develop the model were collected as real-valued emissiv-
ity measurements and therefore lack complex phase in-
formation. Nonetheless, the model possesses structural
fidelity in both settings (optical and radiative) and is
therefore capable of producing meaningful estimates. In
other words, the figure portrays an extrapolatory esti-
mate in the complex-valued optical space supported by
the model structure determined in the real-valued space
of the emissivity. This functionality of the model—
that is, to estimate phase information from real-valued
measurements—provides a suitable alternative to other
such methods for doing the same (e.g., Kramers-Kronig
analysis). Furthermore, since the template formalism
from which the thermophysical model was derived has
been previously shown to adhere to the Kramers-Kronig
relations,12 we are assured that the same is true for esti-
mates produced by the proposed model at any tempera-
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ture in the prescribed range.

IV. CONCLUDING REMARKS

Design objectives involving the radiant exchange of
electromagnetic fields require practical modeling ap-
proaches that reproduce the optical or radiative prop-
erties, often with prescribed levels of accuracy. Opti-
cal response models characterize the dispersion of elec-
tromagnetic waves through and between the participat-
ing media. These models typically take the form of
complex-valued macroscopic functions of radiative wave-
length whose origin is a microscopic governing equa-
tion. Surface radiative properties, on the other hand,
are real-valued quantities that characterize the balanced
exchange of energy at relevant interfaces. By applying
conditions of continuity at the interfaces, one obtains the
Fresnel relations relating the optical and radiative prop-
erties.

A practical, design-oriented approach is one that leads
to a relatively low-complexity characterization of these
properties in terms of a complex-valued macroscopic
model, which nonetheless yields estimates of high enough
fidelity to be useful in an applied setting. With re-
spect to the technically-significant free-electron response
of metals—corresponding, approximately, to the infrared
regime—one of the earliest and most widely recognized
approaches is that given by Drude over a century ago.
Despite the relative fidelity provided by the Drude model
in many idealized scenarios, there are a great number of
practical situations where the model is insufficient to ex-
plain the experimental data. The issue is further compli-
cated when one is also interested the temperature depen-
dence of the material response. One reason for this is that
not all spectrally-dependent responses that contribute
significantly to the overall behavior possess a nonzero
thermoderivative. The total response is comprised of dy-
namics that necessarily behave independently and non-
uniformly as a function of temperature and wavelength.
This is often the case for metals representing even a mod-
est departure from the free-electron theory. That this is
so is also evidenced by the relative sparse availability of
such parsimonious models in the literature, despite their
practical value.

Here we have addressed this problem by generalizing
a Drude(-Langevin) transport equation to account for
departures from the free electron model. The modifi-
cation interprets these departures as anomalously dif-
fusive particle-field interactions expressed in terms of
temporally nonlocal field relaxations. Standard results
and theory—such as, e.g., Boltzmann carrier transport,
Matthiessen’s approximation, and the Bloch-Grüneisen
equation—were leveraged to impart thermodependence
unto the anomalous carrier transport equation in a phys-
ically meaningful way. The practical efficacy and physi-
cal coherence of the resulting structure has been demon-
strated by applying the model to nickel, a material known

to deviate substantially from the free electron model due
to its nontrivial valence configuration. Aside from the
theoretical considerations, nickel is also an ideal candi-
date due to its wide use in applied contexts.
A systematic approach for determination of the model

parameters from experimental data has been described.
We demonstrate that the resulting seven-degrees-of-
freedom model significantly outperforms previously pro-
posed models, reproducing eight sets of measurements
spanning four separate studies. The experimental data
sets correspond to an approximate spectral bandwidth
λ ∈ [1, 16]µm and an approximate temperature range
T ∈ [0, 1400]K. The accuracy of the model is such that
it is amenable for use in applied (e.g., design-oriented)
contexts. Furthermore, although only one of the data
sets used to develop the model includes complex-valued
phase information, procedural regression of the model pa-
rameters, along with the physically motivated structure
and thermal dependence, make it possible to form inverse
estimates of phase information (i.e., at differing temper-
atures) that neither require a corresponding Kramers-
Kronig analysis, nor the usual high- and low-frequency
extrapolations.

Appendix A: Temporal Asymptotics of the Stretched
Mittag-Leffler Relaxation

Combining the Mittag-Leffler function16 with the
stretched exponential form of the Kohlrausch-Williams-
Watts (KWW) dielectric relaxation model,45,46 one ar-
rives at the more general decay structure given by

Eµ(−(t/τf )µ) =
∞∑
n=0

(−(t/τf )µ)n

Γ(µn+ 1) , (A1)

which we refer to as the stretched Mittag-Leffler relax-
ation (SMLR). The SMLR generalizes the conventional
exponential decay such that one recovers exp(−t/τf )
when µ = 1, a fact that is readily confirmed on examina-
tion of (A1). When τf is a bounded positive value, the
long-time behavior of the SMLR is such that:47

lim
t↑∞

Eµ(−(t/τf )µ) = (t/τf )−µ

Γ(1− µ) , (A2)

so that this recovers expression (7) for the memory ker-
nel, K(t). When the domain of µ is that of the model
described in this work, uniform convergence of the his-
tory integral yields the result:

lim
t0↓−∞

Eµ(−(t/τf )µ)∗ dE(t)
dt

= lim
t↑∞

τµf
dµE(t)
dtµ

, (A3)

where the fractional Leibniz notation on the right-hand
side implies either of the Caputo or the Riemann-
Liouville fractional derivative definitions, since these are
equivalent as t → ∞.16 Thus, within the more general
framework that utilizes the SMLR as the decay kernel,
one nonetheless recovers (8) in the stationary limit.
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FIG. 5. Real (dark, blue) and imaginary (light, orange) parts of the susceptibility (a) and the refractive index (b) for nickel.
The lines for T = 4K (solid) and T = 294K (dashed) were generated with the proposed seven-degrees-of-freedom model in
Eqs. (15) –(17), (29), (30), and (19), realized with the parameter values listed in Tbl. I. The markers indicate measurements
taken at T = 4K (filled) and T = 294K (open).33,44 The complex-valued response model evaluated at T = 294K represents an
estimate of the experimental data at that temperature.
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