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We derive a thermophysical model for the infrared radiative response of commonmetals by
modifying a recently proposed model to account for the presence of thermally driven dynamics.
The temperature-dependence of our model is built upon the consistency of the equation of
motion with the predictions of the relevant equilibrium theory for temperature-dependent
carrier transport. The model parameters are systematically regressed over data representing
a range of temperatures. The resulting model is valid over the approximate spectral range
λ ∈ [1, 16]µm and for the approximate temperature range T ∈ [300, 700]K. Since the model
is expressed as a complex-valued frequency response function, it can be directly incorporated
into the Fresnel relations for use with more general optical and radiative frameworks.

I. Introduction
A first principles approach to dealing with design problems involving radiative transfer is one that considers the

microscopic mechanisms that determine the macroscopic response. For the intraband response of conductive media—the
primary focus of this work—the archetypical example of this methodology is the model proposed by Drude over a
century ago [1]. At its most fundamental level, the Drude model is one that attempts to reconcile, from a microscopic
viewpoint, the dynamics of free electrons. The Drude model may be interpreted as an ensemble realization that leads to
complex-valued optical properties of interest. By applying the appropriate conditions of continuity at the interface
between two media, one can describe the fraction of absorbed and reflected radiation in terms of these optical properties.
The values that result from doing so are known as the Fresnel coefficients. When the Fresnel coefficients are known, the
radiative parameters at a given point along the interface are readily computed.

The spectral range of the free-carrier response of metallic conductors corresponds roughly to the infrared spectrum.
Models of the infrared optical response of metals are useful in a number of contexts ranging from the development of
signature suppressing metamaterials [2] to the design of nanoscale IR antennas [3]. Likewise, models for the infrared
temperature-dependent radiative properties of metals find a wide range of uses, such as predicting the effect of radiative
forcing on heat shielding [4] and aiding in the development of reliable jet engine componentry [5]. In many practical
situations, however, the Drude model fails to explain the detailed responses observed in experimental settings [6–10].

The problem of modeling these responses is accentuated when one seeks to characterize property variations as a
function of temperature. This is due, in part, to the fact that not all spectrally dependent dynamics are driven by thermal
excitations. A given spectrally resolved thermophysical model must therefore account for mechanisms that respond
independently to variations in wavelength and temperature. In this work, we propose a model to accomplish this goal and
illustrate its use by applying it to data for nickel, a transition metal whose infrared response exhibits complex dynamics.

II. Theory
Drude’s model for the free-carrier response of a bulk metallic solid to incident radiation derives from a microscopic

equation of motion governing the behavior of an individual carrier. This has the Langevin form [11, 12]:

m∗
dv(t)

dt
+ ζ v(t) = q E(t) + q η(t), (1)
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where v is the velocity of a carrier having an effective mass m∗, ζ = m∗/τc is a damping related to momentum-
randomizing scattering interactions occurring with an average period τc , and q is the elementary charge. In this
description, E represents the ordered local field and we have modeled the noise force, Fη = q η, as resulting from
random zero-mean local field noise, η.

The thermophysical modeling approach is one that extends our previously derived framework for the description of
anomalous dynamics over a broadband infrared spectrum [13]. Here we have defined “anomalous” to mean intraband
dynamics that represent a systematic departure from the Drude theory. The anomalous model accounts for these
departures by generalizing the local field disturbance:

η̃(t) =
ˆ t

t0

H(t − s)
dE(s)

ds
ds + η(t). (2)

The history integral in Eq. (2) may be understood by considering an impulsive perturbation, for which the integral
records a history of the change rates of the field as it relaxes to equilibrium. This history is shaped by the dimensionless
history kernel,H . The particular history kernel was chosen to balance the need for model performance with the desire
for a succinct description:

H(t) =
(τf / t)µ

Γ(1 − µ)
, (3)

where τf is the characteristic time of field relaxation, Γ( · ) is the gamma (generalized factorial) function, and µ ∈ [0, 1)
represents the strength of field memory decay. When µ = 0, the local field has “perfect memory” of the fluctuation.
Whenever µ > 0, the field fluctuation exhibits an asymptotic relaxation with a decay strength dependent on the value
of µ. When µ→ 1, the history kernel behaves as a Dirac delta, δ(t), which describes the process associated with a
“perfectly forgetful” local field (i.e., Markovian relaxation). After combining Eqs. (2) and (3), substituting the result into
Eq. (1), and then taking the ensemble average, 〈 · 〉, one arrives at the macroscopic carrier transport model

τc
dj(t)

dt
+ j(t) =

(
nd q2 τc

m∗

) (
E(t) + τµ

f

dµE(t)
dtµ

)
, (4)

where 〈η〉 = 0, 〈v〉 = j/nd q, 〈E〉 = E , and nd is the number density.
In order to extend Eq. (4) to account for temperature effects, we consider a temperature-dependent conductivity. This

is motivated, e.g., by the solution to the Boltzmann equation in the Relaxation Time Approximation (BRTA) [12, 14]:

σγ(T) =
nd q2

m∗
τc(T), (5)

where the temperature-dependence of the relaxation time derives from the collision integral in the BRTA equation. The
temperature-dependence in Eq. (5) is obtained empirically from experimental observations in Sec.III.A.

To account for the possibility of superposed macroscopic anomalous carrier dynamics in localized regimes that may
be distinct from the bulk Drude behavior, we assume a single effective carrier type with a relaxation time that may, in
general, be modified in the anomalous regimes. For this purpose, we introduce the dimensionless scaling parameter
α(T) and define τa = α τc . Under a Fourier transform, the transport model then leads to the wavelength-dependent
susceptibility model

χφ(λ,T) = χd(λ,T) + χa(λ), (6)

where we have set α(T) τc(T) = constant in accordance with empirical observations described further on. The Drude
contribution is

χd(λ,T) = −
λ2

2 π c0 ε0

(
σγ(T)

i λ + λγ(T)

)
, (7)

where λγ = 2 π c0 τc , c0 is the speed of light in a vacuum, and ε0 is the permittivity of free space. The anomalous
contribution is

χa(λ) = −(−i)µ
λ2

2 π c0 ε0

(
λ f

λ

)µ (
σa

i λ + λa

)
, (8)
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with λa = 2 π c0 τa and σa = nd q2 τa/m∗ defining the anomalous relaxation wavelength and anomalous conductivity,
respectively. In the frequency domain setting, the parameter µ is best understood as a tuning parameter for the energetic
partitioning of the anomalous term. The energetic partitioning property of nonlocal models has been recently described
in detail [15]. The conductivity relation in Eq. (5) implies physical constraints that are observed when regressing the
model parameters: σγ / λγ = σa / λa = constant. The relative permittivity is then given by the relation ε = 1 + χ:

ε(λ,T) = εβ + χφ(λ,T), (9)

where εβ is the contribution from higher energy bound states [16]. Here we have assumed that the characteristic
timescales of the interband dynamics and the intraband dynamics are well separated. Accordingly, εβ may be
approximated as a real constant over the infrared band of interest, λ & 1µm.

A. Optical and Radiative Properties
The refractive index is directly related to the permittivity:

ñ =
√
ε, (10)

where ñ = n + i k, and with n being the dispersive index and k being the absorptive index. When coupled with Fresnel’s
relations, the refractive indices can be used to obtain the relevant radiative properties. For an optically smooth metal at
thermodynamic equilibrium emitting into free space, the spectral normal emissivity is

εn =
4 n

(n + 1)2 + k2 , (11)

which is valid along any spectral band.

III. Application to Nickel
Nickel is an ideal candidate for this study since it is a commonly used material in engineering applications that also

has the nontrivial valency [Ar] 3d8 4s2. In nickel, band theoretical calculations predict absorption in the near-infrared
response as a direct result the lower level d-orbital valencies, which become active at higher energies [17]. The overall
effect of this is a distortion of the ideal profile generated by the Drude-Sommerfeld model, leading to a profile determined
in part by an anomalous component.

The data used in this study were taken from the study of Edwards and Bayard de Volo [4]. They measured the
emissivity of nickel at room temperature and at higher temperatures using a heated cavity directional reflectometer. The
study provides measurements over the mid-infrared regime corresponding approximately to λ ∈ [1, 16]µm and at the
temperatures T ∈ {306, 583, 722}K. The samples were polished to ensure a smooth surface prior to experimentation.

A. Implementation
The model parameters are realized in three steps. At each step requiring regression, the parameters were obtained by

minimizing Pearson’s chi-squared objective [18]. The first step determines the temperature-independent parameters by
regressing these on the data obtained at the lowest available temperature, T = 306K. This is done to reduce uncertainty
caused by the dominant lattice absorption at higher temperatures. The second step involves fixing the temperature-
independent parameters, and then regressing the temperature-dependent parameters for each data set independently.
The third-and-final step involves extracting a material function—the temperature-dependent conductivity—from the
independently regressed parameter sets.

At each step in the fitting procedure, the bound state contribution is fixed to εβ = 4.396. This value is determined
from the long-wavelength limit applied to the bound electron portion of the model in [10], which was obtained in
terms of our recently derived, physically consistent bound oscillator model [19]. After determining and then fixing the
resulting temperature-independent model constraints, the remaining temperature-dependent parameters are regressed on
each data set independently. Subsequent to this step, it was found that

α(T)σγ(T) ∝ α(T) τc(T) ≈ constant. (12)

In other words, by explicitly allowing the anomalous time constant scaling law to be temperature-dependent, the optimal
values for this parameter obtained on independent data suggest a temperature-independent time constant, τa = α τc , in
anomalous regimes.
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In lieu of modeling the conductivity directly, we obtain an expression for the resistivity ργ = 1/σγ. This is done
since the latter is more aptly expressed in terms of the underlying physics:

ργ(T) = ρr + ρT (T). (13)

This form is appropriate since the resistivity is proportional to the collision integral in the BRTA. This proportionality
extends to superpositions of independent scattering mechanisms [12], a property which is more commonly known as
Matthiessen’s rule. The temperature-independent residual resistivity ρr > 0 is due to lattice defects, while ρT arises
due to electron-phonon interactions, the latter being strongly temperature-dependent. The phononic contribution is
accurately described by the power-law relation

ρT (T) = ρref (T/Tref)
k, (14)

where k = 2.140, and ρref = 0.072µohm·m denotes the value obtained at a reference temperature Tref = 306K. The
residual resistivity is ρr = 0.1134.

B. Analysis of Results
The central result of this study is the seven-degree-of-freedom model obtained by combining Eqs. (6) – (9), (13), and

(14) with the parameters listed in Table 1. Coupling the model with Eq. (11) then yields the normal spectral emissivity
of nickel over the mid-infrared regime λ ∈ [1, 16]µm and for the approximate temperature range T ∈ [300, 700]K.

Table 1 Parameters for the proposed model applied to nickel. The model is obtained by combining Eqs. (6) –
(9), (13), and (14). Units of resistivity are µohm·meter. Units of wavelength are µm. The high-frequency
bound state contribution and the memory decay parameter are both dimensionless. The scaling parameter
κ = nd q

2/ 2 π c0 ε0 m
∗ is used with the physical constraints σγ /λγ = σa /λa = κ to compute the remaining

characteristic wavelengths.

Drude Anomalous
εβ ρr ρref k ρa λ f µ κ

4.396 0.113 0.072 2.140 3.932 33.389 0.276 4.697

Few examples of closed-form, temperature-dependent spectral emissivity models for nickel are found in the literature.
For this reason, we appeal to the spectral normal emissivity model provided by Edwards and Bayard de Volo [4], which
we refer to as the EBdV model. The EBdV model was obtained from a detailed reductive analysis of the Drude-Roberts
model [6]. Its parameters were regressed directly from the emissivity data used in the present study. Thus, we expect
the EBdV model to provide a competitive baseline for assessment of our model. The performance of both models is
displayed in Fig. 1. The error for each model is given in Table 2 for each of the respective sets of measurements. The
errors given in Table 2—as well as the frequency-dependent relative errors in Fig. 1—demonstrate that the proposed
model represents an across the board improvement.

Table 2 Mean absolute relative error (given in %) for the temperature-dependent emissivity models in the
plots of Fig. 1.

306K 583K 722K

EBdV [4] 5.6 6.2 6.2
proposed 1.4 5.0 5.3
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Fig. 1 Comparison of temperature-dependent spectral emissivity models. In plot (a): the model of Edwards
and Bayard de Volo. In plot (b): the spectral normal emissivity Eq. (11) realized with the proposed model. The
relative error for the proposed model is everywhere less than 10%. The parameters for the EBdV model in plot
(a) were regressed by the authors of that study directly from the data represented in the plots.

IV. Concluding Summary
When dealing with the free-carrier response of conductive media, it is often the case that design constraints can be

met from a first-principles approach that involves a low-dimensional microscopic equation of motion. In idealized media,
such as monovalent metals over limited infrared regimes, the Drude model is sufficient for characterizing the optical and
radiative responses. There are many important circumstances, however, where the Drude model insufficiently explains
the experimental data. This issue is further convoluted when one is interested the spectral thermophysical response.
One reason for this is that not all spectrally dependent model components have a nonzero thermoderivative over a given
band, so that the observed behaviors may represent the result of multiple components that behave independently and
nonuniformly as a function of temperature and wavelength. This is often the case for metals representing even a modest
departure from the “free-electron” response. That this is so is evidenced by the relatively sparse availability of such
models in the literature.

In this work, we have addressed this need by adapting a recently derived temporally nonlocal microscopic model
to account for the presence of thermally driven dynamics. The model addresses departures from the free-electron
theory by generalizing the Langevin description to account for structured fluctuations in the local field that decay
with a nonzero time constant. The nonlocal component permits an imperfect memory of previous relaxed states. The
model modification is based on consistency of the nonlocal equation of motion with the equilibrium predictions of
the Boltzmann theory for thermal effects on carrier transport. A realization of the model structure has been obtained
by systematic regression of the parameters over measurements taken for nickel at temperatures ranging from 306K
to 722K. The empirical model realization has a multivariate (spectral and thermal) component and an anomalous
temperature-independent component. The proposed model outperforms previously proposed models, yielding a mean
absolute relative error of less than six percent for each of the data sets and a worst case relative error of less than
ten percent on any single data point. Although the results are presented in terms of the spectral emissivity, the first
principles origin of the model ensures that its use extends directly to more general Fresnel frameworks.
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