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Anomalous carrier transport model for broadband infrared absorption in metals
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We derive a model for accurately reproducing the broadband infrared optical response of common engineering
metals. Here we use “broadband infrared” to refer to wavelengths beginning at 1 μm and extending to
approximately 100 μm or more. The model generalizes the Drude theory to account for sources of anomalous
intraband absorption. This is accomplished by modeling these sources as elements of disorder that introduce
diffusive perturbations into the local field. In the stationary setting, the memory kernel description of the field
relaxation leads to a fractional derivative with an order that corresponds to the memory decay strength. We
demonstrate that this model is fully consistent with the Drude theory and that the semiclassical theory is
recovered under requisite assumptions on the field relaxation or radiative wavelength. The anomalous model
component is shown to reproduce empirically observed anomalous absorption that has been traditionally
corrected by models possessing empirical components that have not been formally derived. Results are presented
for several common metals for which the proposed model accurately reproduces the data over the entire modeled
bandwidth. A comparative analysis confirms that the proposed model represents a robust, high fidelity alternative
to previously proposed models that do not capture the observed physical response over the extended infrared
range.

DOI: 10.1103/PhysRevB.98.235118

I. INTRODUCTION

The optical response of solid media subject to incident
electromagnetic radiation is critical in a variety of commer-
cial, industrial, and natural systems. Accurate determination
of spectral properties is needed in order to meet the pre-
cise design requirements of modern devices [1,2]. Practical
characterizations of these responses commonly take the form
of low-dimensional closed-form parametrizations of the rel-
evant material property appearing in the Maxwell-Heaviside
equations [3–5].

From a theoretical standpoint, closed-form models fa-
cilitate analysis and interpretation of the physical systems
they embody. Closed-form models also address the need for
compatibility with modern theoretical frameworks [6,7]. In
engineering applications, material response models are in-
dispensable for the design and manufacture of optical and
microelectronic devices. When combined with the Fresnel
coefficients, these models further provide the means for es-
timation of the spectrally resolved radiative properties of the
medium [8,9].

When characterizing the optical response of metals, the
essential property of interest is the average motion of free
charge carriers in response to specific radiative forcing [10].
The intraband regime corresponding to this behavior resides
approximately within the infrared spectrum for many metals
of engineering interest. A reasonably accurate model for the
free-carrier response of metals was originally proposed by
Drude over a century ago [11]. Its popularity stems from the
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remarkable accuracy with which it predicts the experimental
observations for many common metals despite its simple
two-parameter structure. Due to its straightforward classical
interpretation, the Drude model is often employed for the
analysis of experimental data, as a starting point for the de-
velopment of models that seek to extend its range of use, and
as a baseline metric for the assessment of model performance
[12–20]. Here we undertake an extension of the Drude model
to account for anomalous intraband absorption by metals to
broadband infrared radiative forcing. In this work, we use the
phrase “broadband infrared” to refer to wavelengths beginning
at 1 μm and extending to roughly 100 μm or more.

Despite its widespread use and simplicity, there are many
situations in which the Drude model is insufficient to explain
empirical data [13,17,21,22]. To address some of these lim-
itations in the intraband absorption by metals, we develop
an anomalous model for the broadband infrared response.
Engineering design applications requiring accurate models of
the infrared optical response of metals are numerous and far
reaching, with use cases ranging from the development of
nanoscale infrared antennas [18] to the design of structural
IR signal suppression and mimicry technologies [23].

Our extended model is motivated by the results of our
previous study [24]—as well as other studies indicating the
need for such an extended framework [14,15,25]—and devel-
oped from the viewpoint that it should be useful when applied
to the materials encountered in practical settings. It should
therefore be capable of accurately reproducing anomalous
absorption profiles that may arise at shorter wavelengths due
to the presence of moderate surface imperfections or due to
complicated valency configurations, along with other features
not well described by the Drude model that tend to arise in the
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far infrared regime and that are intrinsic to the material. As
a basis for assessing the model performance, we compare the
results with those of the Drude and Drude-Roberts models.
The Drude-Roberts model has been frequently used in the
literature to achieve the same goals outlined here, although
typically on a more limited bandwidth [8,26]. It is the suitable
choice for a comparative assessment with our model over the
extended IR range and in the presence of the noted sources of
anomalous absorption.

This work is organized as follows. In Sec. II, the anomalous
conductivity model is derived from an equation of motion
generalizing the standard Drude theory. This is used in the
traditional way to arrive at expressions for the electric sus-
ceptibility and relative permittivity. The Drude-Roberts model
is also defined and the relationships between the various
models are briefly discussed. The properties of the proposed
model are investigated in Sec. III within the formalism of
our recently derived spectroscopic analysis framework [27].
Section IV provides a comparative analysis of the modeling
results for several common metals. A brief discussion is given
in Sec. V summarizing the main conclusions of the study.

II. MODELS

We use the term “anomalous” informally and without a
specific quantitative definition. Rather, we use it to denote
regimes of behavior that depart in some systematic manner
from that predicted by the theory proposed by Drude. We will
show that these anomalous behaviors are appropriately de-
scribed by a noninteger order formulation that is often used to
describe anomalous diffusion in the literature (see, e.g., [28]).

A. Drude model

The semiclassical Drude model for the intraband response
of a bulk conductor to incident electromagnetic radiation is
derived from the equation of motion for an individual electron
(or more generally, for an individual charge carrier). Under a
Langevin description, this has the form [29]

m∗ dv(t )

dt
+ ζ v(t ) = e E (t ) + e η(t ), (1)

where v is the electron velocity, m∗ is the effective mass,
ζ = m∗/τe is a phenomenological damping associated with
velocity-randomizing scattering events occurring at an av-
erage rate γe = 1/τe, and e is the elementary charge. The
forcing is determined by the local field, which consists of
the ordered component E and random fluctuations η. SI units
are used throughout. Taking the ensemble average 〈 · 〉 of the
relevant quantities leads to a macroscopic description of the
current density evolution:

τe

dj (t )

dt
+ j (t ) = Ne2τe

m∗ E(t ), (2)

where 〈η〉 = 0, 〈v〉 = j/ne, and 〈E〉 = E, with n being the
electron number density. Then under a Fourier transform, the
frequency-dependent conductivity may be written:

σd (ω) = σ0

1 − i τe ω
, (3)

so that the dc conductivity is obtained as limω↓0 σd (ω) =
σ0 = ne2τe/m∗. Having obtained the conductivity, the Drude
susceptibility follows directly [30]:

χd (ω) = − ω2
p

ω (ω + iγe )
, (4)

where the plasma frequency is ωp =
√

ne2/m∗ε0 and ε0 is the
vacuum permittivity.

B. Drude-Roberts model

Drude’s earliest investigations into the optical properties of
metals led him to the definition of a two-carrier model of con-
ductivity in 1900 [31–33]. It was not until four years later—in
response to the prevailing theoretical mindset at the time—
that Drude would abandon this idea in favor of (3), the latter
being more commonly associated with his name [11]. Five
decades later, Roberts reevaluated the utility of Drude’s origi-
nal model, defining the susceptibility (in our notation) [13]:

χdr (ω) = i
ω2

p,∞
ωγ∞

− 1

ω

(
ω2

p,a

ω + iγa

+ ω2
p,b

ω + iγb

)
, (5)

which we refer to in this work as the Drude-Roberts model.
The first term in this model is an entirely empirical component
that Roberts imposed in order to accurately fit experimental
data for materials exhibiting an augmented absorption profile
at energies just below onset. This term and its analogs have
appeared frequently in the literature when fitting optical data
[25,26,34,35]. Its necessity is generally attributed to surface
imperfections (surface roughness, oxidation, etc.).

Expression (5) implies the conductivity definition

σdr (ω) = σ∞ + σa

1 − i ω τa

+ σb

1 − i ω τb

, (6)

where the relation ω2
p,∞ = σ∞/ε0 τ∞ was arrived at by in-

ferring a time constant τ∞ = 1/γ∞ in order to maintain
dimensional consistency. This is necessitated by the fact that
there is no time constant associated with the empirical sus-
ceptibility term in Roberts original definition (or in any of the
aforementioned references), though a time constant is implicit
since his original definition is given in terms of the parameter
σ∞. Thèye has previously shown that even in well-treated
samples, the structures modeled by the empirical term can
be experimentally verified [25]. However, these structures can
be made small if modern sample preparation techniques are
employed that reduce to negligibility the surface roughness,
and if the sample is completely unexposed to the environment
until the moment of experimentation in order to mitigate the
effects of surface contaminants [15].

C. Proposed model

We take (1) as a starting point for our model derivation.
Beginning in this way ensures that terms in the resulting
response model have their origin in a corresponding equation
of motion. In order to formulate a more complete model that
accounts for microscopic anomalies in the local field that
may result in macroscopically emergent anomalous dynamics,
we consider a correction to (1) in the form of a generalized
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fluctuating field:

η̃(t ) = F

(
E (t ), τf

dE (t )

dt

)
+ η(t ), (7)

where τf may be regarded as a characteristic time of field re-
laxation. Since the zero-order field effect is already accounted
for in the Drude model of (3), the simplest realization of the
modified local field deviating from the Drude description is
that which permits a Markovian relaxation F = τf dE/dt . A
more general realization is one that accounts for the presence
of a historical path dependence, or memory, in the field
damping:

η̃(t ) = lim
t0↓−∞

∫ t

t0

K(t − s)
dE (s)

ds
ds + η(t ), (8)

where it has been assumed that enough time has passed since
“switching the field on” so that the initial distribution has
been forgotten. The dimensionless function K is known as the
memory kernel.

Our primary objective is that of obtaining a low dimen-
sional description of the anomalous response that provides a
general empirical fidelity while remaining amenable to phys-
ically meaningful interpretation. We motivate our choice of
memory kernel accordingly and assess its practicality for the
purposes of modeling and analysis further on. An appropriate
choice is therefore

K(t ) = (τf / t )μ

�(1 − μ)
, (9)

which imposes a power-law memory decay. Here �( · ) is the
gamma (generalized factorial) function. The condition μ = 0
implies a perfect memory. The limiting behavior of (9) in (8)
as μ → 1 leads to the independent and identically distributed
field memory K(t − s) → δ(t − s), which corresponds to
the previously noted Markovian relaxation. For all values in
between, an imperfect, decaying memory is implied, with the
parameter μ ∈ [ 0, 1) determining the strength of decay.

With the specific choice of memory kernel given by (9), the
improper integral on the right-hand side of (8) is equivalent
to the stationary limit of either of the Riemann-Liouville or
Caputo fractional derivative definitions [36]:

lim
t0↓−∞

K(t )*
dE (t )

dt
= lim

t↑∞
τ

μ

f

dμE (t )

dtμ
, (10)

where * is the causal convolution operator. The interested
reader is directed to the Appendix for a more general approach
to the memory kernel that nonetheless leads to (10).

Due to their inherent infinite dimensionality, memory op-
erators such as these find utility in the description of high-
order semistochastic dynamics, which otherwise represent
nondifferentiable processes. In Ref. [37] (and the references
therein), nonlocal operators of the type used here are shown
to be consistent with the Hamiltonian description of damping
in many-body dynamics. The same cannot be stated about
Markov approximations, which are frequently used for the de-
scription of anomalous diffusion processes. Thus, our model
can be understood as describing the anomalous diffusion of
field perturbations introduced by elements of system disorder.
That is, application of a field impulse to the model system
leads to relaxation processes in both the particle and the field,

with the latter being described by a power-law decay. An
analogous treatment applied directly to the electron using a
generalized Langevin equation leads to an extended Drude
model, a result that can be more rigorously achieved from
quantum electrodynamics [38]. The memory function in this
description possesses mathematical qualities similar to that of
an electron self-energy [39].

Combining (8)–(10), substituting into (1), and then taking
the ensemble average, one has the macroscopic transport
equation

τe

dj (t )

dt
+ j (t ) = σ0

(
E(t ) + τ

μ

f

dμE(t )

dtμ

)
. (11)

Before proceeding, we note that (11) is the statistical realiza-
tion of a microscopic equation of motion that serves as a parsi-
monious analog to the equation of momentum for a spherical
particle in unsteady fluid flows [40,41]. This scenario gives
rise to the Basset history drag, a force that is proportional to a
half derivative on the disturbance field.

Following the same procedure previously used with the
Drude expression, the carrier transport equation (11) leads to
the susceptibility model

χ (ω) = χd (ω) + χa (ω), (12)

where the anomalous contribution is

χa (ω) = −(−i)μ
ω2

p

ω1−μ γ
μ

f (ω + iαγe )
, (13a)

= − ω2
p

ω1−μ γ
μ

f

(
fr (μ)

ω + iαγe

+ i
fi (μ)

ω + iαγe

)
, (13b)

with fr (μ) = cos(μπ/2) and fi (μ) = − sin(μπ/2), so that√
fr (μ)2 + fi (μ)2 = 1. (14)

Expression (13b) shows that the effect of μ is to split
the anomalous susceptibility into two separate terms.
The relation (14) demonstrates that the strengths of the
two terms—determined by fr (μ) and fi (μ)—represent
a complimentary partition of the overall energy of the
anomalous contribution. This is made evident by considering
the ratio of the two terms at a fixed frequency and as a function
of μ, which is proportional to fi (μ)/fr (μ). The energetic
partitioning property of temporally nonlocal operators and
systems when expressed in the frequency domain has been
recently described in detail [27].

In expressions (13), the dimensionless parameter α allows
the anomalous regime to be distinct from the Drude regime—
for example, when the bulk interior response has a spectral
onset that differs significantly from that of the admittance
near the surface. The presence of this parameter represents
a physical constraint that can be used to reduce the model
complexity. It is motivated by considering a single effective
carrier type having a time constant that may be modified
by the factor α in the presence of secondary, anomalous
structures.

Two important asymptotic characteristics of (12) should
be noted: (i) in the limit of instantaneous field relaxation,
τf → 0 and the proposed model reduces to the simple Drude
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expression (4), and (ii) in the limiting case of a dc field, ω → 0
and the corresponding conductivity model returns σ0.

Both of these conditions imply consistency with the un-
derlying semiclassical theory. This level of consistency rep-
resents a benefit that is not available with the Drude-Roberts
model.

With a susceptibility model in hand, the permittivity is
expressed:

ε(ω) = εβ + χ (ω), (15)

where the polarizability of the medium due to bound states,

εβ = 1 + lim
ω↓0

∑
β

χβ (ω), (16)

is typically either obtained by modeling the frequency-
dependent bound electron contributions χβ (using, e.g., the
Lorentz harmonic oscillator model) or in terms of the real
constant obtained in the limit of (16). This is to say that if
the intraband regime is the modeling focus and the interband
dynamics are sufficiently decoupled from the free-carrier dy-
namics, then expression (16) is a valid approximation.

Reduction of model complexity

With respect to the Drude-Roberts model of (6), the pro-
posed model structure in (13) is analogous to enforcing the
constraint τb = α τa , along with the assumption that the ef-
fective mass remains relatively constant, so that σb = α σa .
Frequently, we will realize models with α = 1, so that the
resulting single-pole-type structure implies a single time con-
stant, with the Drude poles and the anomalous poles coincid-
ing. In this case a parameter reduction is obtained without loss
of accuracy.

The result of (13b) shows that the partitioning property
of μ generates a secondary term. When combined, the par-
titioned components serve a similar purpose to the empirical
term in the Drude-Roberts model, except now this behavior
has been given a physical basis with an associated time
constant. When μ = 1, the anomalous term in the proposed
model has a frequency dependence commensurate with that
of the empirical term. With this in mind, we identify two
simplified model structures. The first is the previously noted
α = 1 case, which leads to a four-parameter model. If, in
addition, μ = 1, then one has the three-parameter model

χ (ω) = − ω2
p

ω γe

(
ω τf + 1

ω τe + i

)
, (17)

where we recall that γe = 1/τe, and where it is again made ob-
vious that one recovers the Drude model under the assumption
of instantaneously diffusive field perturbations.

III. MODEL PHYSICS

Since the Drude model is known to satisfy the Kramers-
Kronig relations (KKRs), the KKR consistency of the model
represented in (12) and (15) is entirely dependent on the
anomalous correction (13). This is so because the KKRs
constitute a set of linear transforms when dealing with linear
optical media [42]. An interesting consequence of the vari-
able field damping memory is that two regimes of behavior

must be considered when assessing the KKR consistency of
the anomalous contribution. This can be most easily under-
stood by considering the anomalous component of the model
conductivity,

σa (ω) = i(−i)μ
σ0 (τf ω)μ

i + ωτe

, (18)

where we have set α = 1 without loss of generality.
When μ = 0 the anomalous term reduces to a simple

Drude term and therefore satisfies the KKRs for the sus-
ceptibility of conductive media. The second, less obvious
regime occurs when μ ∈ (0, 1]. In this regime, the anomalous
conductivity component (18) vanishes in the low-frequency
limit. In this case, the model is appropriately treated with the
KKRs for dielectric media (as is necessary when assessing,
e.g., the Lorentz oscillator). In either of the foregoing cases,
the response in (18) is clearly holomorphic in the upper half
plane so that Titchmarsh’s theorem establishes causality. Here
we have restricted our analysis to the principal Riemann sheet
in order to avoid issues related to branch cuts generated by
the fractional frequency term. Since the KKR consistency is
readily obtained for μ = 0 and μ = 1 (where branch cuts
vanish), and the damping remains nonzero for μ ∈ (0, 1), this
restriction does not represent a loss in generality when es-
tablishing causality. The additional requirement of Hermicity
follows from the fact that the response function was derived
directly from a differential force balance.

In a recent study, we have derived a framework for the
generalized spectroscopic analysis of frequency domain re-
sponse dynamics [27]. The framework is derived within a
variable order calculus formalism and leads to a variable order
frequency response function. Within the context of the present
study, the analysis framework has the form

χ (ω) = ω2
p

γ (ω)(−i ω)q(ω)
, (19)

where the frequency-dependent parameters γ and q—jointly
referred to as the variable order coordinates (VOCs)—are the
generalized damping and generalized derivative order, respec-
tively. Setting Z = ω2

p /χ , with Z = Z′ + i Z′′, the VOCs for
the susceptibility can be solved for exactly:

q(ω) = 2

π
atan2(−Z′′(ω), Z′(ω)), (20a)

γ (ω) = ω−q(ω)|Z(ω)|, (20b)

where |( · )| is the complex modulus of ( · ) and with atan2
denoting the phase-sensitive arctangent function. The general-
ized derivative order reveals the most dominant internal forces
as realized in the observed macroscopic response at a given
frequency of incident radiation.

In the noted study, we have shown how the mathematical
operators (fractional or integer order) in a differential force
balance can be interpreted as defining a basis set for the
complex-valued dynamic space. The material parameters (or
coefficients) in the force balance then determine the unique
trajectory taken by a dynamical system as it traverses the
space. For second-order displacement differential equations—
that is, the type that underlie spectroscopic dynamics—the
dynamic space may be divided into two regimes. When the
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FIG. 1. Analysis of the aluminum susceptibility model (12) as a
function of excitation energy, h̄ ω. The parameters are taken from
a model given in a later section of this work. (a) | − Re{χ}| (dark,
blue) and Im{χ} (light, orange) parts of the complete model (solid),
the Drude component (long-dashed), and the anomalous contribution
(short-dashed). (b) Frequency response of the generalized derivative
order—as expressed in (20a) and derived in [27]—for the complete
model (solid), the Drude component (long-dashed), and the anoma-
lous component (short-dashed) over the viscoelastic (dark shaded)
and viscoinertial (light shaded) regimes. The anomalous component
represents a dissipative correction to the Drude component. The
total model represents their combined effect. The vertical dotted line
denotes the energy below which the anomalous component behaves
as a quasibound state. In this regime, the anomalous term applies a
positive correction to the negative real Drude susceptibility. This can
be interpreted as disorder-based screening applied to the in-phase
component of the overall polarization response.

forcing order (either corresponding to a given differential
operator or to the response of the system) is within the interval
[0,1], we use the designation “viscoelastic.” When the forcing
order is within the interval [1,2], we use the designation
“viscoinertial.” The interested reader is referred to Ref. [27]
for more detail.

In Fig. 1(a), the susceptibility model of (12) has been
plotted for aluminum. The model parameters are the same as
those used further on in this work and were obtained using
data from [43]. The generalized derivative order has been
plotted in Fig. 1(b). In each of the plots, the Drude component
and the anomalous component have also been plotted so that
their energy-dependent contributions to the overall model can
be separately assessed.

A number of important insights can be extracted from
the figure. At energies above ≈0.3 eV, the real (dispersive)
part of the anomalous term finds agreement with the Drude
contribution, so that the two jointly determine the dispersion
in this band. However, the overall loss function is clearly
a result of augmentation of the Drude contribution by the
anomalous term, which manifests as the increase in absorption
one typically associates with such features. In the plot of
the generalized derivative order, one observes that the overall
modeled response asymptotes to order 1 behavior at low
frequencies (i.e., when damping effects dominate) and asymp-
totes to order 2 behavior at higher frequencies (when inertial
effects are important). This demonstrates that the viscoinertial
q ∈ (1, 2) regime corresponds to the free-carrier dynamics—
as should be the case for a consistent analysis framework.

The plot of the energy-dependent derivative order confirms
that the overall effect of the anomalous term is to apply
a dissipative correction to the Drude contribution. This is
expected given the tendency of such anomalies to increase
absorption. Below ≈0.02 eV, the anomalous term exits the
viscoinertial q ∈ (1, 2) (i.e., free-carrier) regime and enters
the viscoelastic q ∈ (0, 1) portion of a bound particle q ∈
(0, 2) regime, remaining near the viscous boundary. This
is directly related to the quasibound state behavior of the
anomalous model component previously discussed and is the
reason the bound oscillator KKRs must be used whenever
μ > 0 in (13).

To enable further characterization of the variable memory
damping effect, the aluminum model is once more plotted
in Fig. 2, except now the analysis is limited to the complete
model (12) and the memory decay parameter is taken over
the range of values μ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. At larger
μ, a second inflection develops in the absorption profile above
≈0.1 eV representing augmentation of the absorptive dynam-
ics in that band. This is precisely the behavior exhibited in,
e.g., the experimental data for silver used in a later section of
the present study. In the monovalent noble metals, this type of
early onset is generally attributed to imperfections in the sam-
ple surface such as defect scattering or thin films of oxidation
[13,15]. As μ is increased, the energy-dependent derivative
order of the anomalous term—demonstrated in Fig. 1(b)—is
shifted further into the viscoelastic regime. When μ = 1, this
curve resides entirely in this regime over the entire intraband
region. As evidenced in Fig. 2(b), the complete model always
resides in the free-carrier q ∈ (1, 2) regime irrespective of
the character of the anomalous component. For μ � 0.5, an
inertial peak develops at ≈0.2 eV, beyond which the dynam-
ics have an order that moves away from the conservative
inertial boundary and toward the dissipative viscous boundary
(corresponding to the early onset absorption).

IV. EMPIRICAL FITS TO OPTICAL DATA

In this section we present a comparative analysis of
modeling results for several common metals. Our choice is
motivated by the conclusions of our earlier study [24],
wherein a reductive optimal procedure was used to fit models
to data for 11 metals over both the intraband and interband
regimes, with the latter being expressed in terms of our
recently developed bound oscillator model [5]. The results of
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FIG. 2. Analysis of the aluminum susceptibility model (12) un-
der tuning of the memory decay parameter μ and as a function of
the excitation energy h̄ ω. The decay parameter is varied over μ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0}, with increasing value implying darker line
colors in each plot. (a) Absorptive (solid) and dispersive (dashed)
parts of the complete susceptibility model (12). (b) Frequency re-
sponse of the generalized derivative order, as derived in [27]. When
μ = 0 (the lightest lines in each plot), the corresponding model
is effectively that of a simple Drude oscillator. In this case, the
low-energy dynamics are determined by the first-order effects (since
inertia has a much longer time to equilibrate in response to the forc-
ing), whereas at higher energies the dynamics are determined by the
second-order inertial effects. For larger values of μ, an inertial peak
develops above which the generalized derivative order moves away
from the inertial boundary and toward the viscous boundary. This
corresponds to the development of early onset absorption represented
by the second inflection in the absorption profile (above ≈0.2 eV).
This is also observed in, e.g., the silver model and data given in a
later section of this work. These effects are generally attributed to
surface disorder in the experimental medium [13,15].

[24] suggest that the model developed in the present study
is apt for describing the infrared permittivity of aluminum,
beryllium, silver, gold, and copper. Indeed, the model defined
in this work accurately reproduces the data over a significantly
extended spectral range, so that we have also found it mean-
ingful to include modeling results for nickel.

A. Implementation

The plasma frequency ω̃p for each material can be found
in the literature [1,24]. These values are provided in Table I.
The best fit to each model is obtained by taking the oscil-
lator strength definition with ω̃p fixed, as in the indicated
references. The oscillator strengths are defined such that
ω2

p = ω̃2
p fa for the Drude model, (ω2

p,∞/γ∞, ω2
p,a, ω2

p,b ) =

TABLE I. Fixed model parameters. ω̃p is given in units of eV and
εβ is dimensionless.

Al Be Ni Ag Au Cu

ω̃p 14.98 18.51 15.92 9.01 9.03 10.83
εβ 18.77 15.50 1.01 2.35 5.37 5.51

ω̃2
p (f∞, fa, fb ) for the Drude-Roberts model, and ω2

p =
ω̃2

p f0 for the proposed model. The oscillator strength f∞
has been defined so that it absorbs the additional implicit
γ∞ factor. The interested reader can consult [24] for greater
detail.

The parameters for each model were obtained by mini-
mization of the Pearson’s chi-squared objective,

V (θ ) =
M∑

m=1

(|�r (ωm; θ )| + |�i (ωm; θ )|)2, (21)

with the relative error residuals defined such that

�i (ωm; θ ) = [ε′′(ωm; θ ) − ε′′
m]/ε′′

m, (22a)

�r (ωm; θ ) = [ε′(ωm; θ ) − ε′
m]/ε′

m, (22b)

and where ε(ω; θ ) = ε′(ω; θ ) + i ε′′(ω; θ ) defines the model
evaluated at frequency ω given a parameter set θ . The ex-
perimental data, εm = ε′

m + i ε′′
m, are defined on the M-sized

frequency grid ωm, with m ∈ [1,M]. Initial minimization of
(21) was achieved by using a swarm intelligence method
known as the Grey Wolf Optimizer to obtain a “global”
minimum [44]. The result was then refined using the method
described in [24]. Prior to optimization, the grid was scaled
in accordance with conclusions of Pintelon and Kollár in
[45]. A byproduct of that study is the result that the noted
scaling method is also appropriate for models having a non-
integer order grid dependence (as is so for the proposed
model).

The bound state contribution to the electronic polarizability
of each medium is recovered in the limit of (16) applied to
the interband portion of the respective models obtained in our
previous study [24]. These calculated values are included with
the plasma frequency for each metal in Table I. In the cases
of beryllium and nickel, a significantly improved fit to all
model structures was obtained by optimizing the traditional
Drude expression with εβ � 1 taken as a free parameter, and
then the fixing the resulting values when fitting the remaining
models.

B. Analysis of results and discussion

The models for each material were obtained from sources
well established in the literature [43,46–48]. The results are
plotted in (Figs. 3–8) for aluminum, beryllium, nickel, silver,
gold, and copper, respectively. The parameter sets and asso-
ciated errors for the proposed model are given in Table II,
whereas those for the Drude and Drude-Roberts models are
provided in Table III. Both the Drude-Roberts and proposed
models represent a substantial, across the board improvement
over the Drude model. This is generally the case due to an
improved fit at nonintermediate wavelengths.
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10100

FIG. 3. Permittivity of aluminum. (a) ε′′ (light, orange) and −ε′

(dark, blue) given in terms of experimental data (markers) and mod-
els (lines). N denotes the number of parameters used in the respective
model. The Drude (D) and Drude-Roberts (DR) model parameter
values are given in Table III. We refer to the model in the plot as
the diffusive field perturbation (DFP) model. The proposed model
parameter values are provided in Table II. The residual subplots (b)
and (c) are in terms of (22) and the energy-dependent derivative order
in plot (d) is defined in (20a).

For the monovalent noble metals (Figs. 6–8), the small-
wavelength deviation is mainly due to the previously noted
increase in absorption typically associated with surface im-
perfections. In the absence of such imperfections, these
materials are expected to remain linear (in log-log space)
up to the onset energy E0 [14,15]. In the case of nickel
(Fig. 5), the source of this excess absorption is partially due
to the more complicated valency structure. Theoretical band
calculations for nickel—which has the electron configura-
tion [Ar] 3d8 4s2—predict structure near h̄ ω ≈ 0.8 eV due
to interaction from the lower-lying d-orbital valencies [49],
which remain dormant at lower energies. Although this is
not readily observed in the corresponding permittivity plot,
it is immediately apparent by inspection of the generalized
derivative order subplot, where a dissipative minimum is
centered about the expected spectral coordinate. We note
that these dynamics are reproduced by the proposed model
with high-fidelity over the broad band 0.67 –286 μm in one
less parameter than the Drude-Roberts model. The proposed

102

103

104

21080

FIG. 4. The same as Fig. 3, except for beryllium.

model has a relative error of just 6.6% over this band, which
represents an order of magnitude improvement over the Drude
model.

A small part of beryllium’s excess small-wavelength ab-
sorption is due to overlap from the broad interband behavior at
h̄ ω ≈ 3 eV (outside the modeled band), which is predicted by
band theoretical calculations [50] and empirically supported
by modeling experimental data, as in our previous study [24].
However, we note that our previous study directly modeled
interband dynamics through a reductive algorithm and that
this algorithm not only removed physically unjustified inter-
band oscillators, but also specifically selected for a secondary
Drude-like mechanism on the same data used in the present
work. Thus, we consider this range to be a valid application
of the model.

The modeling results for aluminum (Fig. 3) indicate
that the proposed model yields a slight improvement
over the Drude-Roberts model, and roughly one order of
magnitude improvement over the Drude model. Comparison
of the permittivity plot with that of the generalized derivative
order leads to the observation that at longer wavelengths,
the Drude model tends to overestimate the dissipative ef-
fect of the medium due to underestimating the in-phase re-
sponse. At smaller wavelengths, the opposite is true as the
Drude model overestimates the tendency of the system to
reject energy due to underestimating the electronic absorp-
tion. Similar features—augmented by the effects of surface

235118-7



J. OROSCO AND C. F. M. COIMBRA PHYSICAL REVIEW B 98, 235118 (2018)

101

102

103

104

105

106
110100

FIG. 5. The same as Fig. 3, except for nickel.

imperfections—are observed in the models for the noble
metals. This is especially the case at longer wavelengths,
where the Drude-Roberts model struggles to accurately track
the data.

One well-known source of deviations from strict Drude
description is the effect of electron-electron interactions [25].
Gurzhi has shown that, under a linearization of his quantum
electron transport equation, Landau’s Fermi-liquid formalism
implies a contributions to the effective collision rate having a
quadratic dependence on the incident field [51,52]:

γee(ω) = γee(0)

[
1 +

(
h̄ω

2πkbT

)2]
, (23)

where γee(0) = ωp(kbT /h̄ωp )2, for a medium of temperature
T and with kb being Boltzmann’s constant [25]. The result was
derived under the assumption that h̄ω, kbT , and kb�D (�D

is the Debye temperature) are all much less than the Fermi
energy EF . This result also assumes near-infrared (NIR)
wavelengths, which Gurzhi defined as λ ∈ [1, 10] μm. In an
effort to reconcile these behaviors, Thèye [25] has previously
applied an analysis to gold that is similar to a more recent
technique known as the extended Drude analysis [16,21].
This involves separating the real and imaginary parts of the
Drude permittivity (15) in terms of (4), and then solving for a

101
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105

106

0.3 1

1.9

2

110100

FIG. 6. The same as Fig. 3, except for silver.

frequency-dependent time constant:

τ (ω) = εβ − ε′(ω)

ωε′′(ω)
, (24)

where εβ is estimated from (16). Then the frequency-
dependent collision rate is γ (ω) = 1/τ (ω).

We find this variable time constant analysis framework
useful here for describing the range of dominance of the
quadratic collision rate dependence and for interpreting the
limitations of each model structure. For this reason, we extend
Thèye’s analysis to the broadband infrared response of gold as
represented by the room-temperature data of Ordal et al. [47].

TABLE II. Parameters for the proposed model. γe is given in
units of eV and γ

μ

f is given in units of eVμ. All others dimension-
less. Blank entries for μ and α denote unity (i.e., not a structural
parameter).

Al Be Ni Ag Au Cu

f0 0.357 0.078 0.063 1.042 0.928 0.646
γe 0.036 0.033 0.016 0.021 0.043 0.095
γ

μ

f 0.862 1.482 0.420 21.277 12.195 35.714
μ 0.105 0.788 0.187 0.373
α 3.721 0.098 0.026

% � 4.0 10.2 6.6 7.0 4.5 5.8
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FIG. 7. The same as Fig. 3, except for gold.

Due to the similar valency structure of the noble metals, and
owing to the similar performance of the models on these ma-
terials, this analysis provides insight extending to the results
of all three. The corresponding relevant values are kb T ≈
0.0257 eV, kb �D ≈ 0.0153 eV, and EF = 5.5 eV, so that we
expect (23) to remain valid (though not necessarily dominant)
for the full NIR range defined by Gurzhi. The results of this
analysis are presented in Fig. 9.

It is a common practice to evaluate the presence of γee

by plotting the collision rate against a quadratic energy grid
[15,21,25], as we have done in Fig. 9(a). In this plot, the
region of dominance of (23) is made immediately apparent. It
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110100

FIG. 8. The same as Fig. 3, except for copper.

is also apparent that the Drude-Roberts model very accurately
describes this behavior. Within the present context, however,
such a plot can be misleading, as the squared grid has the
opposite effect of a more traditional logarithmic axis and we
have modeled over a broadband infrared regime. In order
to resolve this issue, we have plotted the equivalent relation
γ (ω) /ω = 1 /ω τ (ω) against h̄ ω in the inset of Fig. 9(a),
which then permits the use of a log-log scaling. The electron-
electron dominant regime h̄ ω ∈ [0.4, 1.4] eV remains intact,
but it is now made apparent that this constitutes a very small
portion, λ ∈ [0.89, 3.10] μm, of the total modeled band, λ ∈

TABLE III. Parameters for the Drude and Drude-Roberts models. γa and γb are given in units of eV. f∞ is given in units of eV−1. All
others dimensionless.

Drude Drude-Roberts

Al Be Ni Ag Au Cu Al Be Ni Ag Au Cu

fa 0.705 0.078 0.090 1.040 1.007 0.659 0.380 0.076 0.069 1.040 0.997 0.318
γa 0.067 0.040 0.029 0.023 0.043 0.097 0.040 0.033 0.019 0.021 0.041 0.067
fb 0.363 0.026 0.104 0.050 0.062 0.340
γb 0.192 8.256 1.208 9.982 6.185 0.123
f∞ 0.053 0.049 0.095 0.044 0.012 0.007

% � 28.5 36.0 63.1 32.2 15.7 15.7 4.5 10.3 8.9 7.0 9.3 10.2
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FIG. 9. Extended Drude analysis [16,21] of the gold permittivity data [47] and corresponding models from Fig. 7. In each plot: data (gray
dots), Drude model (dashed gray line), Drude-Roberts model (dashed black line), and proposed model (solid black line). The linear portion
of the data in plot (a) indicates the regime over which electron-electron effects dominate in accordance with (23). The log-log inset of plot
(a) was obtained by dividing both sides of Gurzhi’s relation by h̄ ω in order to restore the direct h̄ ω dependence. Plot (b) demonstrates a high
level of agreement with recent results [15], which were collected from carefully treated samples in order to eliminate the effects of surface
imperfections. The units of plot (b) are angular femtoseconds, so that a direct comparison can be made with that study. The inset of plot (b)
demonstrates that the proposed model provides a general fidelity over the entire bandwidth of the data.

[0.91, 286] μm, the latter part of which both the Drude and
Drude-Roberts models fail to accurately track.

Although the proposed model does not produce the
same slope in the electron-electron dominant regime on the
quadratic grid in Fig. 9(a), it nonetheless predicts the linearity
(i.e., the quadratic dependence) and also accurately describes
the permittivity of the sample along this band (see inset of
Fig. 7). This band corresponds directly to the anomalous
absorption due to surface defects and, as indicated by the pre-
vious discussion, these effects are not included in the deriva-
tion of (23). One further notes that the proposed model has
provided a modeling fidelity for the noble metals that either
meets or exceeds that of the Drude-Roberts model. In the case
of silver, this has been accomplished using the reduced com-
plexity model of (17) (i.e., with two fewer parameters than
the Drude-Roberts model), while still accurately capturing the
full bandwidth of the permittivity data λ ∈ [0.62, 248] μm. A
similar result was also obtained for beryllium.

We have expanded on the previous analysis by plotting
τ (ω) against h̄ ω in Fig. 9(b) and on a log-log scaling in
the inset. This makes it clear that the τ (ω) implied by the
proposed model approximately describes the behavior over
the entire bandwidth of the data. Furthermore, the Drude-
Roberts model appears to asymptote to a constant value of
τ (ω) at lower frequencies, which is precisely the behavior
of (23) in the dc limit. It is a critical observation that the
results described in the plot are in good agreement with
those obtained outside of experimental uncertainty from the
same analysis performed in a recent study [15]. In that study,

the experimental samples have been produced by a modern
technique that reduces the rms surface roughness to the order
of 1 nm. Furthermore, they have isolated the samples from
the environment until the moment of experimentation, so that
anomalous absorption has been reduced to negligibility. In
other words, the results described in Fig. 9 represent general
behaviors that are intrinsic to the material.

V. CONCLUDING SUMMARY

The optical properties of metals subject to incident radia-
tive forcing are largely determined by the average motions
of their charge carriers. For the broadband infrared regime
corresponding to wavelengths greater than roughly 1 μm,
the responses of many metals and alloys commonly used in
engineering applications are dominated by the intraband tran-
sitions of their free charge carriers. The standard model for
these behaviors is that given by Drude over a century ago. Due
to its relatively simple structure, its classical interpretation,
and its general empirical fidelity, the Drude model remains in
common use in both research and applied contexts.

However, in many practical circumstances involving the
design of photonic devices, the Drude model is insufficient
for accurately reproducing the optical response of commonly
used metals. This is observed even in media that are expected
to be well described by the Drude theory, such as the monova-
lent noble metals. At shorter infrared wavelengths, anomalous
absorption often arises due to the presence of surface imper-
fections that are ubiquitous in practical settings (i.e., those
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occurring outside of meticulously controlled experimental
conditions). At both short and long wavelengths, other effects
that are innate to the medium—nontrivial valency structure,
electron-electron interactions, anomalous skin effects, etc.—
may play an important role and lead to a systematic diver-
gence from the Drude model. Thus, accurately reproducing
the broadband infrared response of metals common to engi-
neering applications requires more flexible and robust models.

In this work, the Drude model has been generalized to
account for the effects of anomalous features by modeling
their presence as diffusive perturbations in the local field. To
account for the semistochastic nature of these perturbations,
a generalized memory kernel is assumed that leads, in the
stationary setting, to a fractional derivative having an order
of differentiation corresponding to the perturbation memory
decay strength. We show that this generalized response model
is consistent with the semiclassical Drude theory, reducing
to the standard model under anticipated conditions, namely,
when the characteristic time of field relaxation approaches
zero or in the long-wavelength limit.

When the field relaxation time is nonzero, the anomalous
portion of the proposed model bifurcates, generating a sec-
ondary term that contributes directly to an anomalous absorp-
tion profile. It is demonstrated that the bifurcation represents
a partitioning of oscillator energy into the anomalous absorp-
tion component. This anomalous absorption profile has been
empirically confirmed in numerous studies and is observed in
most practical settings. This behavior is traditionally modeled
in the literature by empirical means lacking well-defined
physical explanation. Under prescribed conditions, two sim-
plified versions of the proposed model are identified that
permit a reduction of model complexity (i.e., fewer structural
parameters).

Parameterizations of the proposed model have been ob-
tained for several metals over broadband infrared regimes.
The selected metals, which are commonly used in engineering
applications, exhibit anomalous features and are not well
described by the Drude theory. A comparative analysis of
the proposed model results is facilitated with fits to both the
Drude model and to the Drude-Roberts model. The latter
was selected for its competitive modeling fidelity, though the
higher fidelity is only achieved with the inclusion of empirical

model components lacking a formally derived origin. The
analysis has revealed that the Drude model tends to perform
well only at intermediate wavelengths and that the Drude-
Roberts model struggles to accurately track the data at long
wavelengths. The model proposed in this works meets or
exceeds the fidelity of both comparison models in all cases,
and typically introduces fewer additional parameters than
the Drude-Roberts model. A variable Drude time constant
analysis reveals that the proposed model implies a frequency-
dependent time constant that more completely describes the
data over the entire modeled bandwidth.

APPENDIX: STATIONARY CHARACTER OF THE
STRETCHED MITTAG-LEFFLER MEMORY DECAY

The stretched Mittag-Leffler (SML) decay,

Eμ[−(t/τf )μ] =
∞∑

n=0

[−(t/τf )μ]n

�(μn + 1)
, (A1)

is a hybridization of the Mittag-Leffler function with the
stretched exponential relaxation implied by the Kohlrausch-
Williams-Watts (KWW) response model [53–55]. The SML
decay represents a generalization of the traditional expo-
nential decay in the sense that for μ = 1, one recovers
exp(−t/τf ), as can be verified by inspection of (A1). For
finite τf , the SML achieves a scaled power-law dependence
in the stationary limit [55]:

lim
t↑∞

Eμ[−(t/τf )μ] = (t/τf )−μ

�(1 − μ)
, (A2)

which is equivalent to the memory kernel K(t ) defined in (9).
For the prescribed range of μ, the convergence is uniform and
one has

lim
t0↓−∞

Eμ(−(t/τf )μ)*
dE (t )

dt
= lim

t↑∞
τ

μ

f

dμE (t )

dtμ
, (A3)

where, in the long-time limit, both the Riemann-Liouville and
Caputo definitions are equivalent to the fractional derivative
on the right-hand side [36]. In other words, if we assume the
more general form of the SML memory decay, the stationary
result is precisely that obtained in (10).
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