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Application to radiative dispersion
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We describe a physical framework for analyzing the spectral dynamics of a broad range of media. The
framework is built on a variable-order calculus formalism that permits the description of temporally nonlocal
behavior. Such emergent behavior is observed in the response of assorted complex media. The analytical features
of the formalism are discussed and it is demonstrated how they correspond to the generalization of other well
known theories for the description of nonlocal many-body effects. The framework is employed to analyze a set
of spectroscopic data for the high-frequency dielectric response of a nanofluidic graphene dispersion and the
midinfrared optical response of amorphous quartz silica. A practical application of the analysis is facilitated
by a model definition that generalizes the semiclassical Lorentz theory to allow for nonlocal damping effects.
The model is derived from a fractional order differential equation of motion. From the analysis, an estimated
parametrization for the model structure is obtained. The fidelity of the analysis methodology is validated
against optimized parametrizations in a multiobjective (optical and radiative) setting. The results demonstrate
the utility of the analysis and indicate a specific well-defined region of nonlocality having a distinct fidelity that
encompasses the entire Pareto front. This region is shown to be inaccessible to integer order descriptions of the
mean field dynamics.
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I. INTRODUCTION

The earliest contributions to applied fractional calculus
were made by Heaviside [1]. Since that time, the analysis of
systems having complex constitutive relations has greatly ben-
efited from models based on noninteger differintegral opera-
tors. Due to the availability of data produced by increasingly
accurate experimentation, along with the parallel development
of the nonlocal (i.e., noninteger order) theoretical models,
numerous studies have provided empirical verification of non-
local dynamics. Among the many diverse areas employing
such methods, a few are fluid mechanics, radiative mechanics,
rheology, electrochemistry, solid state physics, biomechanics,
and geophysics [2–11].

Variable order operators are those possessing a functionally
dependent operator order. The earliest research related to
variable-order calculus was performed mainly from a math-
ematical viewpoint [12–14], while more recent contributions
have focused on the development of a consistent physical
theory [15,16]. Models utilizing variable-order operators have
been employed to describe elastomeric strain [17], advective-
dispersive systems [18], particulate flows [19,20], and for the
analysis of the stability characteristics of variable damping
regimes in a closed loop setting [21]. Previous studies involv-
ing variable-order operators have taken place, almost without
exception, in the time domain.

In this work, we develop a variable-order framework for
the analysis and physical interpretation of complex systems
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in the frequency domain. The framework is used to analyze
systems originating from integer order differential equations
as well as those exhibiting features that are well modeled
by temporally nonlocal response equations. We apply this
framework specifically to spectroscopic data. To facilitate the
application of the variable-order framework, we also define a
nonlocal dispersion model that generalizes the semiclassical
Lorentz theory. The model is motivated by the stochastic
nature of the long-range structure in amorphous media and
the success of nonlocal operators at reproducing the emergent
effects of many-body dynamics [22,23].

The organization of this work is as follows: in Sec. II we
briefly review the fundamentals of material response theory
and define the relevant variable-order nonlocal differential
and integral operators. In Sec. III we introduce the har-
monic oscillator models referenced in this work. In particular,
Sec. III B introduces the nonlocal dispersion model, considers
its physical interpretations, and discusses its physical consis-
tency. In Sec. IV the variable-order frequency domain analysis
framework is derived and its analytical features are delineated.
An application of the analysis framework is demonstrated in
Sec. V, where it is used to obtain a parametrization for the
previously noted dispersion model on experimental data. The
results are then compared against those obtained via optimiza-
tion. Section VI consists of a brief concluding discussion.

II. THEORETICAL PRELIMINARIES

A. Response theory

The bulk macroscopic response of a material to electro-
magnetic forcing is described in the frequency domain by
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its relative permittivity (also, dielectric function), ε. Over
absorptive bands, the permittivity is frequency-dependent and
complex-valued (to account for phase loss). The permittivity
of a medium having K distinct absorptive mechanisms in
response to low-intensity forcing may be written [24]

ε(ν) = ε∞ +
K∑

k=1

χk (ν), (1)

where ε∞ is the core polarizability and where χk are the
susceptibility contributions. In this work, we use ν inter-
changeably to denote wave number and frequency, taking care
where necessary to specify the corresponding units.

When discussing optical properties, the complex permittiv-
ity is related to the complex refractive index:

ε′ = n2 − k2, (2a)

ε′′ = 2 n k, (2b)

where n is the dispersive (real) index and k is the absorp-
tive (imaginary) index, and where we have made use of the
notational convention that z′ = Re{z} and z′′ = Im{z}. The
sign convention observed by the models in this work are such
that ε = ε′ − i ε′′ and ñ = n − i k, with i = √−1. The
absorptive-dispersive indices can be used along with Fresnel’s
well-known equations to obtain many useful radiative and
optical properties.

B. Operator definitions

The derivative definitions we will use all represent special
cases of the definition originally proposed by Coimbra for
differentiation to variable order q(t ) < M , which is most
generally expressed as [15,25]

∗Dq(t )x(t ) =
∫ t

t0+

(t − σ )M−1−q(t )

�[M − q(t )]
DMx(σ ) dσ

+
M−1∑
m=0

[Dmx(t0+ ) − Dmx(t0− )] tm−q(t )

�[m + 1 − q(t )]
, (3)

where �(·) is the gamma (generalized factorial) function,
M = �q(t )� with �·� being the ceiling operator, and where we
use the operator notation D(·) to represent differentiation of
order (·) with respect to time. For the sake of mathematical
clarity, we denote constant noninteger orders with μ and
variable orders with q(·). The interested reader can refer to
the Appendix for the most generic definition of the operator.
Coimbra and co-authors have previously shown that an ap-
propriately weighted sum of interpolating fractional deriva-
tives converges to the foregoing definition as the number of
interpolating terms is increased [26]. Under a requisite set of
physical and mathematical criteria, it has also been previously
established that this definition is the appropriate choice when
modeling dynamical systems [16].

The physical meaning of the summation on the right-hand
side of (3) is embedded in the fact that it evaluates to zero only
if the system is in equilibrium for all times t ∈ (−∞, 0+].
This is necessary since the path-dependent memory of non-
local systems decays asymptotically, so that the system can
only initialize from a true zero-memory state if it has been

in equilibrium for all times previous. Under an approximate
assumption of thermodynamic equilibrium (appropriate for
the macroscopic approach taken for modeling the statistical
mechanical systems investigated here), we will assume this
sum is zero throughout.

When equations of motion for the variable x(t ) have a
stationary long-time response, both q and x generally be-
come frequency dependent, and one may write the stationary
Laplace transform

L{∗Dq(t,p)x(t )} = sq(ν,p)x̂(s), (4)

where s is the Laplace parameter resulting from the transform
L{·}, x̂ is the transform of x, q = limt→∞ q, and p has
been used to denote the fact that q may generally depend on
other (time-invariant) parameters. Within the context of the
discussion to follow, condition (4) applies when the particle
described by x has reached an energy eigenstate.

For inversion of a variable-order Laplace expression, we
define the Riemann-Liouville-type integral of (frequency-
dependent) order q(ν) > 0:

Iq(ν)x(t ) =
∫ t

t0

(t − σ )q(ν)−1

�[q(ν)]
x(σ ) dσ. (5)

III. HARMONIC OSCILLATOR MODELS

A. Complex damped harmonic oscillator

In well-ordered lattice configurations at nominal temper-
atures, the mean field particle dynamics of solid dielectric
media can be reasonably expected to follow a spatially lo-
cal response. This consideration, for example, underlies the
prevalence of the Born–von Karman (periodic) boundary
conditions often employed to simplify the analyses found in
many standard statistical physics texts [27,28]. The complex
damped harmonic oscillator (CDHO)—also known as the
Lorentz oscillator—is a natural extension of this concept into
the realm of macroscopic, phenomenological susceptibility
models.

In the time domain, the CDHO represents a susceptibility
model for bound particle oscillations that treats the mean field
response from the viewpoint of a the spatially localized be-
havior of an individual particle whose dynamics are governed
by the second-order displacement ODE [29]:

D2x(t ) + γ D1x(t ) + ν2
n D0x(t ) = F (t ; ν), (6)

where the undamped natural frequency, νn = √
κ/m, is deter-

mined by the particle mass m and the binding stiffness κ , and
F (t ; ν) = (−e/m) E(t ; ν) = (−e E0/m)Re{exp(i ν t )} is the
electromagnetic forcing (applied to a particle of charge e) due
to incident radiation having a wavelength λ = 2π/ν. With
respect to, e.g., the phononic infrared response of dielectric
media, the damping corresponds to a quasiparticle lifetime
of τ = 1/γ . The statistical correlations of the microscopic
CDHO under a Langevin description have been recently in-
vestigated [30]. The noted study also includes an interesting
analysis of the microscopic oscillator energy correlations.

By relating the bulk volumetric polarization to the indi-
vidual dipole displacement and then applying a stationary
Laplace transform, one obtains the traditional form of the
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CDHO,

χL(ν) = ν2
p

ν2
n − ν2 + i γ ν

, (7)

where the plasma frequency νp =
√

4 π nd e2/m is related to
the number density, nd , of the particles in the medium. An
important takeaway from this model is that the damping, as
expressed in (6) and (7), is assumed to be linearly proportional
to the instantaneous particle (or dipole) displacement velocity
and results from the interaction of the particle with a well
ordered local field.

B. Complex μ-damped harmonic oscillator

In amorphous media, we expect the behavior to deviate
from the classical theory due to long range structural stochas-
ticity [31], which may impart a historical path dependence
on the constituent behavior at a given time. Since this will
arise from locally exerted forces, we model this in terms
of its net effect on the constituent lifetime. In the case of
condensed media, we postulate that the particle lifetime in a
disordered lattice arises by the same mechanisms assumed in
the classical theory, except where now they may depend on
previous excited states.

The notion of non-Markovian macroscopically emergent
timescale mixing arising due to stochastic microscopic dy-
namics has been studied within statistical mechanical frame-
work by generalizing the method of Van Hove [22,23]. In
these works it was demonstrated that the appropriate math-
ematical formalism for such a phenomenological description
is the fractional calculus. In keeping with the foregoing pos-
tulate, we define the complex μ-damped harmonic oscillator
(which we denote CDμHO) in terms of the second-order
fractional displacement ODE:

D2x(t ) + γ 2−μ
μ Dμx(t ) + ν2

μ D0x(t ) = F (t ; ν), (8)

where μ > 0 may be interpreted in the time domain as in-
dicating the extent of the memory of the particle of its prior
states. That is, when μ = 1, the classical theory is recovered
and the particle is said to be “perfectly forgetful” (i.e., it
depends only on the instantaneous displacement velocity).
When μ 
= 1, the particle’s behavior at a given instant depends
on a decaying memory of the net damping resulting from
previous local field interactions. In Ref. [32], Burov gives
an excellent thorough analysis of the statistical properties of
the microscopic CDμHO under a Langevin description (along
with other related oscillators).

If we consider the stationary response of the system
(i.e., when transient memory effects and memory of the
initial conditions have both vanished), then the corresponding
susceptibility model is obtained by Laplace transform [33]:

χμ(ν) = ν2
p

ν2
μ − ν2 + γ

2−μ
μ (i ν)μ

. (9)

Some intuition about the nature of the fractional damping
term can be achieved by noting that in a Hamiltonian descrip-
tion of a closed system, dissipation is modeled by coupling the
particle to a bath that absorbs the dissipated energy [29]. Then
the bath represents the net effect of N -body dynamics on the

particle and the observed damping emerges as a net effect of
the many-body conservative dynamics.

Accordingly, the fractional damping term can be under-
stood as phenomenologically modeling the net damping effect
of a potentially non-Markovian bath imposed by the lattice
disorder. More rigorous treatments of this idea do, in fact,
lead to equations of motion coupled to a history integral
over the interacting bath [34,35]. This interpretation is also
in agreement with the common use of fractional operators
for modeling many-body dynamics. Indeed, Jonscher has
previously posited—in developing his renowned “universal
dielectric response” theory—that the power-law (i.e., frac-
tional) frequency dependence observed in many materials at
sub-GHz frequencies arises from the relatively slow adjust-
ment of the many-body background field to the fast hopping
electrons or dipoles [36]. This description bears a remarkable
similarity to that of the Basset history drag, which arises in
fluid mechanical models of the motion of a spherical particle
in, e.g., high-frequency harmonic Stokes flows [4,37]. The
Basset term is proportional to a nonlocal derivative of order
1/2. It is also worth noting that the stretched-exponential at-
tenuation of radiation empirically observed in certain random
media has been successfully modeled using space-fractional
generalizations of the corresponding integer order theoretical
frameworks (e.g., Beer’s Law) [6,38].

Note that if we choose to neglect the inertial effects in
our fractional displacement ODE model (as is usually done
when modeling, e.g., polymer solution dynamics), then the
corresponding susceptibility model can be expressed as

χCC (ν) = ε0 − ε∞
1 + (i ν τ )1−α

, (10)

where εCC (ν) = ε∞ + χCC (ν) is the well-known Cole-Cole
equation describing the dielectric response of the medium
[39]. The Cole-Cole equation serves the purpose of gener-
alizing to fractional order the classical Debye model, which
is recovered by setting α = 0 in (10). Then (9) may also be
interpreted as extending the Cole-Cole description for use
with systems where the inertial effects play an important role.

1. Model properties

One must take care when modeling in the frequency
domain to ensure that a particular response model defines
a subset of all materials that can exist in nature. For this
purpose, we appeal to the Kramers-Kronig relations (KKRs)
[40–42]. KKR consistency can be confirmed by verifying
[43]: (i) that the model is analytic in the closed upper half
complex plane and (ii) that the model is Hermitian.

It is well known that the CDHO is KKR compliant. It
can be shown by a direct (albeit lengthy) application of
the Cauchy-Riemann equations [44] that item 1 above holds
for the CDμHO as long as γ > 0 (i.e., the system must be
dissipative for all ν > 0) and 0 < μ < 2. Note that enforcing
the strict limits in the latter requirement also ensures that
expression (9) has a nonzero dissipative component for all
ν. The Hermicity requirement is proved by showing that
χμ(ν) = χμ(−ν), where z is the complex conjugate of z.

A secondary check on the physical consistency of suscepti-
bility models of the type proposed here is to verify adherence
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to a relevant sum rule. For this purpose, we define the energy
absorption measure on a frequency domain response model
χ = χ ′ − i χ ′′ as

A[χ ] =
∫ ∞

0
ν χ ′′(ν) dν. (11)

By separating the real and imaginary parts of (9), defining
ρ(ν) = ρ ′(ν) + i ρ ′′(ν), and then writing

χμ(ν) = ν2
p

[
ρ ′(ν)

|ρ(ν)|2 − i
ρ ′′(ν)

|ρ(ν)|2
]
, (12)

where we have also defined

ρ ′(ν) = ν2
μ − ν2 + γ 2−μ

μ νμ cos

(
π μ

2

)
, (13a)

ρ ′′(ν) = γ 2−μ
μ νμ cos

(
π μ

2

)
, (13b)

it is made immediately apparent that above some frequency
νh � νμ we have Re{χμ} ≈ −ν2

p/ν2. By combining this re-
sult with the KKR consistency of the model, it can be directly
shown that

A[χμ] = 1
2π ν2

p, (14)

so that the CDμHO adheres to the well-known plasma sum
rule [45].

2. Energetic interpretation

An important interpretation is obtained by noting that
the expressions (13) represent complimentary partitions of
the oscillator energy into dispersive (conservative) (13a) and
absorptive (dissipative) (13b) components. The role of μ in
these expressions is to provide a tunable coupling between
the two partitions, a feature that is absent from the CDHO.
In the section that follows, we formalize this idea of ener-
getic partitioning by deriving a generalized dynamic analysis
framework. Doing so requires adopting a more general differ-
ential operator definition that permits a continuously variable
order. The resulting analytical tools are quite general and can
be used for integer order differential equations, as well as for
their fractional and variable-order counterparts.

IV. VARIABLE ORDER FORMALISM

In the framework that follows, the variable-order param-
eters are shown to constitute a mathematical basis for the
complex plane—which we regard as being the entire space
over which the system’s dynamics may be defined (henceforth
referred to simply as the “dynamic space”)—and are used
to describe complex-valued trajectories that represent the
subset of the dynamic space correlated to the actual system
dynamics. Within this context, we refer to the variable-order
parameters as variable-order coordinates (VOCs) for reasons
that will be presently made clear and we refer to the general
analysis framework as the variable-order formalism (VOF).

As will be demonstrated presently, the VOF represents
a generalized macroscopic description of the system as an
energetic reservoir that either absorbs or rejects energy. This is
analogous to dynamic mechanical analysis. Its distinctiveness
lies in the fact that it is based on a continuously variable

derivative order, so that the description of the energetic evo-
lution as a function of forcing frequency can account for
nonlocal dynamics. Such dynamics often arise as a result of
many-body dynamics, so that this framework is particularly
well suited for the analysis of spectroscopic systems.

A. Physical origin of the VOF

Consider a simple viscoelastic oscillator described by
the fractional second-order displacement ordinary differential
equation (FODE)

mD2x(t ) + c ∗D1/2x(t ) + kD0x(t ) = F (t ), (15)

where x is the position, F is the forcing, m is the mass, c is the
viscoelastic damping coefficient, and k is the binding stiffness.
Allowing for multiple fractional damping orders μn that may
be either viscoelastic μ ∈ (0, 1) or viscoinertial μ ∈ (1, 2), a
generalized FODE may be written

N∑
n=0

γn ∗Dμnx(t ) = F (t ), (16)

where γn are generalized damping coefficients, and μ0 = 0
and μN = 2. The corresponding stationary Laplace transform
for constant fractional differentiation orders yields [33]

x̂(s)

F̂ (s)
=

N∑
n=0

γns
μn,

≡ G−1(s). (17)

Letting s = i ν with i = √−1, and then separating the real
and imaginary parts leads to

Im{G−1(ν)} =
N∑

n=0

γn νμn sin

(
π μn

2

)
,

=
N−1∑
n=1

γn νμn sin

(
π μn

2

)
, (18)

where the latter equality is a result of the fact that sin(0) =
sin(π ) = 0. If μk = 1 so that cos(π μk/2) = 0, then the real
part is

Re{G−1(ν)} =
N∑

n=0

γn νμn cos

(
π μn

2

)

=
k−1∑
n=0

γn νμn cos

(
π μn

2

)

+
N∑

n=k+1

γn νμn cos

(
π μn

2

)
. (19)

Given an M-sized set of frequency domain data (such as
that obtained from experimental investigations of the optical
properties of solid media) Zm ≡ Z(νm), m ∈ [1,M] ⊂ Z+, it
is natural to establish the relations

N∑
n=0

γn νμn

m sin

(
π μn

2

)
= zi,m, (20a)

N∑
n=0

γn νμn

m cos

(
π μn

2

)
= zr,m, (20b)

032208-4



VARIABLE-ORDER MODELING OF NONLOCAL EMERGENCE … PHYSICAL REVIEW E 98, 032208 (2018)

FIG. 1. The variable-order coordinates diagram for the midwavelength infrared susceptibility of amorphous quartz silica (SiO2). The data
are taken from Refs. [46,47]. The black curvilinear path traces out the trajectory of the dynamics χ (ν ) through the viscoelastic (dark gray
region) and viscoinertial (light gray region) regimes, with arrowheads indicating direction of increasing frequency. The black dot indicates
χ (νm) where νm ≈ 1040 cm−1, with angular component q(νm) defining the generalized differential order at νm. The dashed arrows, defined by
the expressions (21), indicate the dissipative (imaginary, vertical) and conservative (real, horizontal) components of the system at νm, which
represent orthogonal decompositions (or more precisely, phasor projections) of the “total” dynamics (indicated by the solid arrow). In the VOC
diagram, the largest resonant mode is always the farthest point on the trajectory from the origin of the plot—in this case, the point at the top of
the trajectory intersecting the dissipative axis q = 1.

where zi,m and zr,m are the imaginary (dissipative) and real
(conservative) parts of Zm (the dynamics), respectively. Typ-
ically, one sets, e.g., Zm = 1/χm, so that Zm is directly
associated with the system dynamics. Thus the equations are
collocated on the frequency grid νm defined by the experimen-
tal data and coupled by the damping coefficients γn.

We are interested in a variable order description of the
data, which can be obtained by replacing the constant order
parameters {γn, μn} in (20) with parameters that vary freely
with frequency {ζm, qm}. This leads to variable-order relations

ζm νqm

m sin

(
π qm

2

)
= zi,m, (21a)

ζm νqm

m cos

(
π qm

2

)
= zr,m, (21b)

where qm = q(νm) are the variable derivative orders and
ζm = ζ (νm) are the variable generalized damping coefficients,
referred to jointly as the VOCs. Introducing the VOCs consti-
tutes transforming a linear system of 2N + 2 unknowns in two
equations at each of M data points into a nonlinear system of
two equations in two unknowns at each of M data points. The
VOCs can be solved for explicitly at each νm:

qm = 2

π
atan2(Zm), (22a)

ζm = 1

ν
qm
m

|Zm|, (22b)

where |·| is the complex modulus and with atan2(·) repre-
senting the phase-sensitive arctangent function. The VOCs are
well defined for all inputs Zm ∈ C and all frequencies νm > 0.

If we let the VOCs be continuously defined as {̃ζ , q̃}, then
the VOF takes the form of a variable-order transfer function:

G̃−1(s) = ζ̃ (ν)sq̃(ν). (23)

This provides a single-term basis for the entire dynamic space.
It can be used to give insight into the energetic evolution of
dynamical systems in relation to the differential order of the
system. Before proceeding, we note that the expressions in
(20) and (21) represent generalizations of dynamic moduli.
Dynamic moduli are used in the discipline of dynamical
system analysis (also, dynamic mechanical spectroscopy) to
describe the energetic characteristics of a system as a function
of forcing periodicity. They are orthogonal decompositions
of the systemic energy into imaginary (dissipative) and real
(conservative) components.

Bearing all of this in mind, the VOF is perhaps best
understood by plotting the real and imaginary parts of the
system response G as a contour, parameterized by frequency,
and represented in the VOCs. Figure 1 shows the complex
susceptibility G = χ for the midinfrared band of amorphous
quartz silica (SiO2), which is the subject of modeling efforts
undertaken in later sections of this work. The ellipsometric
data—resulting from the study of Ref. [46] and obtained in
tabulated form from Ref. [47]—are plotted in a variable-order
coordinates (polar) diagram, which makes it clear why the
VOCs were so named. The figure shows how the dynam-
ics of the system traverse the viscoelastic and viscoinertial
regimes for increasing forcing frequencies (i.e., decreasing
wavelengths). At any point in the trajectory of the system,
the dynamics can be orthogonally decomposed into their
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conservative and dissipative components, corresponding to
the generalized dynamic moduli (21).

A wealth of information can be obtained from the variable-
order coordinates diagram. For example, it is immediately ap-
parent that no less than two linearly independent basis integer
order differential operators (0 and 1 or 1 and 2) are needed
in order to reach a given point in the dynamic space. This is
because the order 0 (Hooke’s law) and order 2 (Newton’s law)
operators can only reach disjoint portions of the conservative
axis. Assigning damping coefficients to each operator then
determines uniquely the trajectory taken by a given system as
it traverses the space. In the absence of an order 2 operator
(as in the previously noted polymer solution systems), the
viscoinertial regime is entirely unreachable. This tells us,
for example, that the Cole-Cole equation can only reach the
viscoelastic regime, and is therefore not apt for describing
modal dynamics that traverse the viscoinertial regime. It is
also apparent that only a single appropriately chosen basis
fractional order differential operator is needed to reach a
given point in the space, and that with two such operators
it is possible to construct a trajectory that traverses both the
viscoelastic and viscoinertial regimes. Here it is important to
recall that the terms “viscoelastic” and “viscoinertial” refer,
in this context, to the type of energetic partitioning. In the
time domain, these refer to the operative memory mechanism,
with the former implying a positional memory and the latter
implying a momentum memory.

Accordingly, and through the study of Fig. 1, it is made
apparent why nonlocal operators should find utility in describ-
ing the dynamics of many-bodied systems. In these systems it
is expected that nonlocal effects will play a more prominent
role than in, e.g., systems well described by rigid-body dy-
namics, whose equations of motion are often derived directly
from principles of Newtonian mechanics. As opposed to their
integer order counterparts, nonlocal operators are capable of
interpolating conservative and dissipative dynamics directly,
rather than by superposition alone (as must be done with
integer order operators). Accordingly, one may interpret the
variable order q at any point in the system trajectory as the
“bulk” or “macroscopic” differential order of the system. In
this work, we will refer to q as the generalized differential
order and to ζ as the generalized damping.

B. Relation to Jonscher’s universal dielectric response

Many common systems, whether by topological scale
similarity (i.e., “fractal topology”) [48] or by some other
mechanism [49], attain an approximately constant nonlocal
emergent behavior over a given band. Jonscher noted this
in his landmark study encompassing a broad range of ma-
terial types, prompting him to write down his universal di-
electric response (which he attributed directly to many-body
dynamics), defined in Ref. [36] as

χ ′′(ν)

χ ′(ν)
= cot

(
π n

2

)
= energy lost per radian

energy stored per radian
= const,

(24)

where n is a real number. If we set q = 1/n and solve for
q in (24), then it is immediately clear that q(ν) = μ = 1/n

corresponds directly to constant fractional differential behav-
ior along some band, as indicated by the VOF in (22a).

C. Relation to stationary radiative forcing

The model presented in (22) and (23) is directly related
to the time domain stationary variable-order model given
by Ramirez and Coimbra [16], with the notable exception
that—as allowed and defined by the data—the VOCs in this
frequency domain implementation vary continuously as a
function of the frequency-dependent data. This type of anal-
ysis is directly applicable to the sinusoidal forcing imposed
on solid media by incident electromagnetic radiation. For the
reader’s benefit, we summarize concisely the pertinent results
of [16] within the context of the present discussion. Given a
general fractional second-order system of the form

mD2x(t ) + cD1x(t ) +
N∑

n=1

γn ∗Dμnx(t ) + kD0x(t ) = F (t ),

(25)

with radiative forcing F (t ) = E0 Re{ei ν t } and where μn ∈
(0, 1) ∪ (1, 2), we seek a single-term, variable-order model
for its stationary behavior. The stationary variable-order
derivative is given in terms of (3) as

lim
t0+ ↓−∞ ∗Dq(t )x(t ) = Dq(ν,pq )x(t ), (26)

where the set of variables pq represent as-of-yet undetermined
dependencies, so that, with the inclusion of variable damping
ζ and assuming a sinusoidal steady-state response, we have

ζ (ν, pζ )∗Dq(ν,pq )Aei ν t

=
(

mD2 + cD1 +
N∑

n=1

γn ∗Dμn + kD0

)
Aei ν t , (27)

with pζ defined in a fashion similar to pq . Evaluating deriva-
tives on both sides and dividing out common factors leads to

ζ (ν, pζ )(i ν)q(ν,pq ) = −m ν2+c ν+
N∑

n=1

γn (i ν)μn +k. (28)

Solving as in the VOF derivation, one obtains for the time
domain stationary variable-order parameters

q(ν, pq ) = 2

π
atan2(di, dr ) (29)

and

ζ (ν, pζ ) = 1

νq(ν,pq )

√
d2

i + d2
r , (30)

where

di = c ν +
N∑

n=1

γn νμn sin

(
π μn

2

)
, (31)

and

dr = −m ν2 +
N∑

n=1

γn νμn cos

(
π μn

2

)
+ k, (32)
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represent the imaginary (dissipative) and real (conservative)
portions of the system dynamics in response to incident radi-
ation, respectively, and clearly pq = pζ = (μn, γn,m, c, k).
The relationship between the stationary time domain model of
(29)–(32) and the frequency domain model given in (22) and
(23) is apparent by inspection. With this in mind, one observes
that the frequency domain model represents a (continuously
variable, data-dependent, stationary) Laplace transform of the
data generating system assumed in (16) as well as any closed
form linear ordinary differential model equation having a form
such as (25). In other words, at every point, νm, in the modeled
response band, the model (23) returns the Bode response (i.e..
the steady-state amplitude and phase response) of the media.

D. Steady-state response to radiative forcing

The steady-state response of the model (23) with respect
to (17) is obtained by direct variable-order Laplace inversion
using definition (5):

xss (t ; ν) = lim
t↑∞

L−1{ζ (ν)−1s−q(ν)F̂ (s)},

= lim
t0↓−∞

νq(ν)

ζ (ν)

∫ t

t0

(t − σ )q(ν)−1

�[q(ν)]
F (σ ) dσ, (33)

where L−1{·} is the inverse Laplace transform so that,
assuming incident radiation F (t ; λ) = E0 Re{exp(i t/λ)}
having wavelength λ = 1/ν, one obtains

ξss (t ; ν) = ν−q(ν)

ζ (ν)
cos

[
ν t + π q(ν)

2

]
, (34)

where ξ = x/E0. The result (34) clearly demonstrates that for
such a system, the generalized differential order is directly
coupled to the phase shift of the steady-state response. By
comparison with Fig. 1, we see that a (hypothetical) purely
conservative response results in either no phase shift or a
180◦ phase shift (depending on whether the system is elastic
or inertial, respectively). A maximally dissipative response
is one accompanied by a 90 degree phase shift, precisely as
expected.

The steady-state response can also be written in terms
of the displacement field D (i.e., accounting for the core
polarizability) by consideration of (1):

ξD
ss (t ; ν) = ε∞ cos(ν t ) + ξss (t ; ν). (35)

The accuracy of (34) and (35) is limited to the bandwidth of
the experimental data.

E. Spectroscopic analysis with the VOF

1. Determination of the properties of the VOF by analysis
of the CDHO over a range of damping values

The analytical value of the VOF is extended by considering
the frequency response of the VOCs for a set of example
systems. For the purposes of illustration, we define the sample
set of CDHOs

χL(ν) = 1

ν2
n − ν2 + i γ ν

, (36)

where νn = √
2 and we let the damping take values on

γ ∈ {0.01, 0.5, 1, 1.5, 2, 2.5, 1000}, with the smallest and

largest values representing the limiting cases γ /νn � 1 and
γ /νn � 1, respectively. The remaining values have been se-
lected to encompass a broad range of damping conditions with
respect to the natural system dynamics: γ /νn � 1, γ /νn ∼ 1,
and γ /νn � 1.

With Z(ν) = 1/χL(ν), frequency-dependent and paramet-
rically defined plots for the VOCs (22) corresponding to
the set of response functions described by (36) are given in
Fig. 2. By inspection of the plots, one immediately obtains the
coefficient values for each system. Dynamics in the frequency
response that are associated with the dominance of a particular
term in the response function are represented by simultaneous
flat bands in q(ν) and ζ (ν), a property that will be leveraged
further on when using the VOF to obtain parameters for a
CDμHO model using experimental data. The conditions of
simultaneous VOC flat bands represents a more complete
generalization of the properties noted by Jonscher during his
investigations. For a true second-order system, this implies
that the Hooke’s law q(ν) ≈ 0 and Newton’s law q(ν) ≈ 2
forces are associated with terms in all of the defined integer
order response functions that can be described as dominant
over a given band. This, of course, occurs at low and high
frequencies for the order 0 and order 2 terms, respectively.

Only the function with γ = 1000 produces a region of
dominance for the order 1 term relative to the bandwidth of
the response dynamics. Expanding on this point, one notes
that the change in slope of q about the pivot point defined by
q(νn) = 1 has the following properties:

lim
γ↓0

dq

dν

∣∣∣∣
ν=νn

= ∞, (37a)

lim
γ↑∞

dq

dν

∣∣∣∣
ν=νn

= 0. (37b)

Condition (37a) describes first-order forces of null impor-
tance, whereas (37b) describes a system entirely dominated
by viscous forces. More realistically, a first-order response
due to arbitrarily large damping is represented by a nearly
flat response over some dynamically relevant band, with q

asymptoting to 0 at arbitrarily low frequencies and asymptot-
ing to 2 at arbitrarily high frequencies. This is demonstrated in
Fig. 2(a), where the dashed line is generated by the damping
value γ = 1000.

In other words—taking into account the behavior of q

when order 0, 1, and 2 terms are important—the optimality
bands (i.e., regions of flatness) in the q-ν plane suggest or
correspond to discrete potentially interpolating terms in the
system transfer function which define the system order over a
given band. These tell us the spectral bands for which certain
types of forces in the corresponding equations of motion (rep-
resenting a force balance) become important. Furthermore,
the pivot-slope behavior at q(νn) = 1 demonstrates that the
relative importance of an “interpolation order” at a given
frequency corresponds to the instantaneous slope dq/dν, with
shallower slopes implying greater importance.

2. Analysis of a Cole-Cole system with the VOF

As a final example, we consider dielectric relaxation in a
non-Debye nanofluid that is well modeled by the Cole-Cole
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FIG. 2. Frequency response of the generalized differential order and generalized damping for a set of classical CDHOs (Lorentz
oscillators), which correspond to second (integer) order displacement ODEs. The legend values correspond to the damping coefficients defining
each system. The undamped natural frequency νn is indicated by the vertical dotted line in (b) and (c). Viscoelastic (viscoinertial) regimes
are indicated by dark gray (light gray) regions, in accordance with the VOC diagram of Fig. 1. Simultaneous regions of relative flatness
dq/dν ≈ 0 and dζ/dν ≈ 0 over a broad band indicate bandwidths for which a single term in the differential equation of motion dominates.
For low (ν/νn � 1) and high (ν/νn � 1) frequencies, this will always lead to q(νlow) ≈ 0 and q(νhigh) ≈ 2 (for a true second-order system),
corresponding to Hooke’s law (elastic) and Newton’s law (inertial) forces, respectively. By comparison of (a) and the (log-log) inset of (b), it
is clear that the system with very large damping has a dominating term over ν ∈ [10−2, 102]. Inspection of (a) reveals that q(νn) = 1 (i.e., the
differential order at the undamped natural frequency is 1). The coefficients for all terms in the system response function can be obtained by
direct inspection of the generalized damping (b). In plot (c), the evolution of the generalized damping is plotted as a function of generalized
differential order. The coefficients can be obtained by inspection of this plot as well.

equation. Systems such as these are often accurately cap-
tured by fractional differential descriptions due the memory
effects imposed by viscoelastic transduction of the incident
field [50]. The experimental data and corresponding Cole-
Cole model, taken from Ref. [51], are for nanoparticles of

graphene suspended in a squalene base fluid at a temper-
ature of 343.15 K (70 ◦C). The parameters for the Cole-
Cole model are: ε0 = 39.96, ε∞ = 5.18, τ = 856 ns, and
α = 0.28. The fractional order in this model is then μ =
1 − α = 0.72. The generalized damping is asymptotically

FIG. 3. Dielectric response of graphene nanoparticles dispersed in squalene at 343.15 K (70 ◦C). In each plot, the dots represent the
experimental data and the lines represent the model. Both are taken from Ref. [51]. The plots of the real (gray) and imaginary (black) values
for the dielectric function are given in (c). ν is given in units of MHz. In the Cole brothers’ original derivation [39], the parameter α is related to
the angle created by the offset of the semicircle origin from the Re{ε} axis (in the negative direction) in the Cole-Cole diagram for the dielectric
function of (a). The parameters for the Cole-Cole model are: ε0 = 39.96, ε∞ = 5.18, τ = 856 ns, and α = 0.28. The fractional order in this
model is then μ = 1 − α = 0.72, which is demonstrated by the dashed line in the q(ν ) plot of (b). The generalized damping is asymptotically
determined by the coefficients in the material response function: 1/(ε0 − ε∞) = 0.0288 at low frequencies and τμ/(ε0 − ε∞) ≈ 1.23×10−6 sμ

at high frequencies. The high-frequency asymptote is indicated by the dashed line in the inset of the ζ (ν ) plot of (d).
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equivalent to: 1/(ε0 − ε∞) = 0.0288 at low frequencies and
τμ/(ε0 − ε∞) ≈ 1.23×10−6 sμ at high frequencies. In other
words, the generalized damping provides (in this case)
some measure of the evolution of the overall time constant of
the response at a given forcing frequency, as determined by the
coefficients of the material response function. The Cole-Cole
diagram, the frequency-dependent dielectric function plot,
and the VOC plots for the nanofluid are all given in Fig. 3.
The plots demonstrate that the VOC framework provides the
same meaningful interpretation for fractional systems as was
demonstrated for integer order systems, regardless of whether
inputs to the framework are in terms of a continuously defined
model or in terms of discrete experimental data.

V. ANALYSIS OF THIN FILM RADIATIVE
PHYSICS WITH THE VOF

We demonstrate here a “toy application” of the VOF to the
estimation of the parameters for a single-oscillator response
model for an IR absorption mode of SiO2 using the CDμHO as
our model structure. For this purpose, we use the ellipsometric
data of Ref. [46] obtained in tabular form from Ref. [47]. We
consider the IR mode defined on ν ∈ [932, 6500] cm−1. Our
analysis is performed on a scaled grid νm = kν νm, where kν =
median(νm)−1 for the M-sized grid νm, m ∈ [1,M], defined
by the experimental data. As demonstrated in Ref. [52], this
scaling gives better conditioning results than the inverse mean
and is also the appropriate choice for use with models having
a noninteger power-law grid dependence.

A. Obtaining a CDμHO model from VOF analysis

The CDμHO parameters are obtained by using the VOCs
to estimate a portion of the dynamics and then subtracting the
estimated dynamics from the experimental data. The VOCs
are then used along with the unmodeled dynamics in order to
estimate the remaining CDμHO parameters. For this purpose,
we use the model-fitting template

Zm = a0 − a2 ν2
m + aμ(i νm)μ, (38)

where Zm = χ−1
m = (εm − ε∞)−1 is the experimental data and

the right-hand side of (38) is equivalent to the inverse of
(9) under appropriate scaling and redefinition of the coeffi-
cients. The underbar notation indicates that the coefficients
correspond to the scaled grid. We take ε∞ = 2.10 from, e.g.,
Refs. [43,53].

The VOCs referenced in the following estimation proce-
dure are ascertained by application of expressions (22) and
can also be extracted from Fig. 4. Since our experimental data
do not extend to a frequency where q(νm) ≈ 0, allowing the
estimation of a0, we begin with a unity DC gain assumption:
a0 = 1. Deviation incurred by this assumption can be “scaled
out” if needed after obtaining the remaining parameters.
Then a2 = ζ (νhigh) ≈ 19.22, where νhigh = kν 6500 = 1.749
is such that q(νhigh) ≈ 2.

In order to estimate the final set of parameters, we define
the “unmodeled dynamics” as

Z̃m = Zm − Z0(νm), (39)

(a)

(b)

FIG. 4. VOCs for SiO2 on the scaled grid ν = kν ν, where ν ∈
[932, 6500] cm−1. Represented here are experimental data from
Refs. [46,47] (dashed black line), an optimized CDHO (solid gray
line), and the CDμHO estimated using the VOF (thick solid black).
The spectral coordinate for the maximum amplitude response is
indicated by the vertical dotted line. The VOCs for the unmodeled
dynamics Z̃ are given by the thin solid line. The estimated damping
parameters (at resonance) are indicated in each plot with a gray
dot. Comparison of expression (34) for the steady-state radiative
response with the improved tracking of the generalized differential
order provided by the CDμHO in the inset of (a) reveals that the
fractional model will provide better phase reproduction at higher
frequencies.

where Z0(νm) = a0 − a2 ν2
m are the dynamics that have al-

ready been estimated. In other words, Z0 contains the low-
and high-frequency dynamics, which represent the elastic and
inertial conservative portions, respectively. Noting the results
of our previous analysis—that the interpolated damping is
innately expressed at the natural frequency—we can use
the remaining unmodeled dynamics Z̃m with the VOCs to
estimate the remaining parameters. The natural frequency is
taken to be that of the maximum susceptibility, νn ≈ νr =
kν 1052 = 0.2831. Here νr = kν νr , where νr is the resonant
(or maximum amplitude response) frequency. Note that in
general, νn 
= νr for any system with nonzero damping, but
the two are approximately equivalent when γ /νn � 1. Our
remaining estimated parameters are then μ= q(Z̃(νr )) = 0.12
and aμ = ζ (Z̃(νr )) = 0.64.

The final estimation step, along with the resulting esti-
mated VOCs, are shown in Fig. 4. Also shown in the figure is
a traditional integer order CDHO with parameters obtained by
optimization: νp = 909.86, γ = 75.39, and νn = 1052.26. A
closer inspection of the unmodeled dynamics Z̃m is provided
in Fig. 5, where the ν axis has been “zoomed in” to the range
covering the primary response dynamics. Over this range,
the VOCs remain approximately constant—a condition that
is analogous to Jonscher’s result (24)—which suggests that
the remaining damping term can be modeled with a fractional
term. A subtle-yet-important detail expressed in the figure
is the fact that, although the resulting CDμHO has utilized
this noninteger order damping term, it nonetheless attains
q(νn) = q(νn) = 1. This is consistent with the experimental
data and with the CDHO.
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(a)

(b)

FIG. 5. The same as in Fig. 4, except “zoomed in” to the
bandwidth of the primary response dynamics. In the unscaled grid,
this range is equivalent to ν ∈ [932, 1300] cm−1. The unmodeled
dynamics are approximately constant with respect to frequency
over the dynamic bandwidth and—in accordance with the analy-
sis properties described in Sec. IV E 1—suggest a damping term
having noninteger generalized differential order μ = q ≈ 0.12 and
corresponding generalized damping ζ ≈ 0.64 over this band. Despite
the nonlocal damping term in the obtained CDμHO model, the
generalized differential order nonetheless attains q(νn) = q(νn) = 1,
thus retaining the property of maximal dissipation at resonance, in
agreement with the CDHO and the experimental data.

The fundamental difference between the CDμHO and the
CDHO is that the former (within the present context) will
more accurately model the attenuated high-frequency dynam-
ics. This is primarily due to the improved high-frequency
phase-matching behavior of the CDμHO. Recalling our earlier
discussion relating the generalized differential order q to
the phase of the steady-state radiative response (34), this
improved phase matching can be observed in the inset of the
q(ν ) analysis plot of Fig. 4. As we show presently, this feature
has important implications for the estimation of bulk radiative
properties.

Once obtained on the scaled grid, the estimated CDμHO
parameters are rescaled to the original grid as described
in Ref. [52]. After rescaling, they are (in units of cm−1):
νp = (1/a2)1/2 ≈ 848, γμ = (aμ/a2)1/μ ≈ 608, and νμ =
(a0/a2)1/2 ≈ 848, where μ = 2 − μ with μ = 0.12.

B. Estimation of absorptivity using VOF results

Let us now consider the optical response of a thin
film of amorphous silicon dioxide having uniform thickness
h = 5 mm. Following the analysis of Ref. [24], we consider
the spectral normal absorptivity α′

λ of the film in the presence
of normally incident radiation:

α′
λ = (1 − Rn)(1 − Tfilm)

1 − Rn Tfilm
, (40)

where the normal interface reflectivity is

Rn = (n − 1)2 + k2

(n + 1)2 + k2
, (41)

(a)

8 9

1

2

(b)

100020003000400050006000

FIG. 6. Optical and radiative characteristics of the midinfrared
response of SiO2. (a) Dispersive (thin lines) and absorptive (thick
lines) indices for the experimental data [46,47] (solid black), CDHO
(dashed gray), and CDμHO (solid gray). (b) Spectral normal absorp-
tivity computed from corresponding complex refractive indices in the
top plot. The thin black line is Planck’s distribution (normalized) for
a black body emitter assuming approximate equivalent temperature
of the Sun T� ≈ 5785 K. The CDμHO has better reproduction of the
generalized differential order at smaller wavelengths [see Fig. 4(a)],
which corresponds to the improved tracking of the absorption index
in the attenuation band λ � 4 μm. In contrast, the CDHO is unable
to accurately reproduce this behavior, leading to substantial overes-
timation of the absorption at smaller wavelengths. Integration over
Planck’s distribution during computation of the total absorptivity
significantly augments the accumulated error.

and the internal film transmittance is

Tfilm = exp

(
−4 π k h

λ

)
, (42)

for incident radiation having wavelength λ. One can then
estimate the total normal absorptivity of the film along this
band when exposed to, e.g., solar radiation by integration over
Planck’s energy density distribution for an ideal blackbody
emitter [54]

eb,λ = C1

λ5[exp(C2/λ T�) − 1]
, (43)

where T� ≈ 5785 K is an approximate equivalent temperature
for the Sun. Here C1 = 2 π hP c2

0 and C2 = hP c0/kB , with
hP being Planck’s constant, kB being Boltzmann’s constant,
and where c0 is the speed of light in a vacuum.

The complex refractive index and the spectral normal
absorptivity for the data and models have been plotted in
Fig. 6. Displayed alongside the absorptivity is Planck’s dis-
tribution (normalized to its corresponding maximum). The
CDHO does not accurately track the absorption index in the
high-frequency attenuation band. This translates to a fac-
tor of 2 overestimation of the spectral absorptivity at small
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wavelengths. The mean absolute percentage error for the
CDHO estimation of the spectral absorptivity is ≈24%, while
for the CDμHO it is just under 5%. Due to the signif-
icant weighting imposed by Planck’s distribution at small
wavelengths (where the model mismatch is the greatest), the
CDHO overestimates the total absorptivity by ≈33%. The
CDμHO, on the other hand, underestimates the total absorp-
tivity by just 0.35%, representing two orders of magnitude
improvement over the integer order model.

C. Estimation of absorptivity by optimization

Assessing the aptitude of the foregoing approximate
method for producing a reasonably accurate spectral model of
the material absorptivity (within the CDμHO model structure)
entails comparing the results against those obtained from an
optimal configuration. This, however, is not a straightforward
task. This is because the VOF method has produced a CDμHO
model having fidelity in two different spaces: that of the
complex refractive index and that of the absorptivity. The
complication arises when forming the standard data-fitting
objective for such a problem:

V (θ ) =
M∑

m=1

S(νm; θ ), (44)

where S is the weighted power spectrum for the model
mismatch

S(νm; θ ) = (ψr (νm) |�r (νm; θ )|)2 + (ψi (νm) |�i (νm; θ )|)2,

(45)

and the mismatch terms being minimized are

�r (νm; θ ) = χ ′(νm; θ ) − χ ′
m, (46a)

�i (νm; θ ) = χ ′′(νm; θ ) − χ ′′
m. (46b)

Here χ (ν; θ ) = χ ′(ν; θ ) − i χ ′′(ν; θ ) is the respective
model evaluated at a frequency ν given a parameter set θ ,
and χm = χ ′

m − i χ ′′
m is the experimental data defined on the

M-sized frequency grid, νm, m ∈ [1,M].
The frequency-dependent weightings ψr (νm) and ψi (νm)

are chosen depending on the intended application [55]. For a
reasonably accurate fit to the most important, nonattenuated
features of the refractive indices, one would assume that the
weightings ψr = ψi = 1 are sufficient. However, by compar-
ing the refractive indices with the spectral absorptivity (as
in Fig. 6), it is clear that the attenuated region at smaller
wavelengths also becomes important when an accurate model
is needed for the spectral absorptivity. Furthermore, with re-
spect to Fig. 6 one observes that the important (nonattenuated)
regions of the refractive indices and the unimportant (highly
attenuated) regions of the refractive indices carry the reverse
significance when the model is used to compute the total
absorptivity by integrating over Planck’s distribution.

To mitigate issues resulting from the disparity between
attenuated and nonattenuated regions in spectroscopic data,
it is typical to define weightings having the form ψr (νm) =
1/|χ ′

m| and ψi (νm) = 1/|χ ′′
m|. This approach is insufficient in

the present setting, since it will tend to overemphasize the
attenuated regions, leading to models that do not reproduce to

10

100
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102
103
104

100020003000400050006000

FIG. 7. Weighted power spectra for the model mismatch. Each
line represents error at the outset of an optimization algorithm, ini-
tialized with the optimal CDHO configuration. The thick solid gray
line represents no weighting of the error terms, the thin dashed gray
line represents error weighted by the data (i.e., relative error), and
the thin solid black line is the error weighted by the inverse spectral
normal absorptivity. The inverse absorptivity emphasizes only the
relevant regions and does so in a smooth, continuous manner. The
relative error weighting tends to overemphasize attenuated regions
and deemphasize dynamics near resonance.

sufficient accuracy the dynamics near resonance. Rather than
resorting to the complications of a multiobjective optimiza-
tion setting, we note that the particular form of the spectral
absorptivity (or of similar radiative properties) is such that it
can be exploited to embed the secondary objective into (44)
by choosing the weightings

ψr (νm) = ψi (νm) = 1/α′
λ(νm). (47)

The reason why this is expected to yield desirable results
is made evident by inspection of Fig. 6. In particular, with
respect to (40), (41), and (42), regions having little effect in
determining the spectral absorptivity receive the weighting
1/α′

max ≈ 1 when α′
max is close to unity. Those playing a more

important role receive the weighting 1/ᾱ′ > 1 where ᾱ′ <

α′
max � 1. In other words, mismatch having little effect is “left

alone” while that playing a larger role is emphasized during
optimization. A comparison of various spectral weighting
strategies is demonstrated in Fig. 7.

Since the spectral absorptivity is a continuously defined
function of frequency (or wavelength) that is relevant to
the physics of the problem and which also considers the
thickness of the film directly via (42), the smoothly modified
optimization problem yields the desired multiobjective result,
but does so without inflating the cardinality of the nonconvex
optimization space (as would likely be the case with a tradi-
tional multiobjective formulation). By fixing the values of μ

on the domain μ ∈ (0, 2) with a step size of �μ = 0.01, and
then optimizing the CDμHO at each of these values, the Pareto
front in Fig. 8 was obtained.

Of the numerous conclusions that can be drawn from such
a plot, we highlight three here. First, one notes that properly
weighting the problem has little effect on the performance of
the integer order CDHO model. This is, of course, due to the
fact that it is constrained to integer order grid dependence, and
accurately reproducing both the spectral absorptivity and the
refractive index requires capturing the attenuated dynamics
without incurring mismatch in the vicinity of resonance. The
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FIG. 8. Pareto optimality for minimization of model mismatch in
the space of the refractive indices and the total normal absorptivity.
Here � ñ is the relative root mean squared error of the complex
refractive index and � α′ is the mean absolute relative error of the
total normal absorptivity. Models were optimized using the inverse
spectral absorptivity to weight the error terms in the objective. The
optimality is characterized over the entire range of KKR-compliant
damping orders, μ ∈ (0, 2), with a step size of � μ = 0.01. The
larger circular markers with thin black outlines indicate models
defined on μ ∈ [0.07, 0.13], a range which evidently has a distinct fi-
delity in the multiobjective setting. The Pareto front consists entirely
of a subset of this range. The indicator for the CDHO represents the
optimal CDμHO configuration with μ fixed to unity.

second note of import is that the entire Pareto front consti-
tutes the subset with μ ∈ [0.07, 0.13], which is a range of
μ yielding a fidelity that is distinct from other values. Our
final important conclusion is that the CDμHO configuration
obtained by means of the VOF analysis very nearly achieves
the point on the Pareto front yielding the best combined results
for the refractive index and the absorptivity (as determined by
a Euclidean measure).

VI. CONCLUDING REMARKS

Over the last few decades, nonlocal (i.e., fractional and
variable-order) differential and integral operators have re-
ceived an increasing level of attention from both researchers
and practitioners due to their utility when modeling anoma-
lous responses that may arise as the result of many-body
dynamics. Reproducing such effects is often an intractable
task for models utilizing local (i.e., integer order) operators
alone, as these effects manifest from a dynamical scale ap-
proaching “infinite dimensionality.” Under amenable condi-
tions, describing behaviors in this space with closed-form
models possessing parsimonious parametrizations therefore
entails the use of nonlocal operators. This is because they
possess the requisite inherent infinite dimensionality.

A significant demand is placed on the acuity of the user
when first encountering the differintegral time domain ex-
pressions that define temporally nonlocal operators. This is
due to complications that inevitably arise from attempting to
reconcile their meaning (mathematical or physical) with the
intuitions established during the study of the integer order

calculus. In a stationary frequency domain setting, however,
interpreting temporally nonlocal operators is a more straight-
forward mathematical endeavor that also lends itself well
to physical interpretation. This interpretation can be directly
extended to linear combinations of such operators—resulting
from a set of corresponding linear differential equations of
motion—and to the systems they describe.

In this work, a generalized, variable-order framework (or
formalism), denoted VOF, has been derived for the analysis
and interpretation of complex frequency domain data. The
framework has been extended for use with spectroscopic
systems. These systems provide a natural setting for this
generalized analysis since they possess the pertinent char-
acteristics: they are defined by many-body dynamics, they
are characterized by the dispersion of energy, and they are
innately described by a complex-valued response function of
frequency (or wavelength). It has been demonstrated that the
VOF represents a generalization of other related mathematical
descriptions such as the Cole-Cole equation and Jonscher’s
well-known “universal dielectric response” theory.

To facilitate a practical application of the VOF (i.e., beyond
interpretive analysis), a nonlocal generalization of the classi-
cal Lorentz harmonic oscillator has been defined. The gen-
eralized model, denoted CDμHO, represents the (complex-
valued) frequency response function corresponding to a time
domain fractional differential equation of motion where the
emergent dissipative damping term may have a historical path
dependence on particle-field interactions. This generalization
is, in its essence, analogous to the manner in which the Cole-
Cole equation generalizes the Debye theory.

An example application has been demonstrated for the
determination of the parameters for a CDμHO model of the
midinfrared susceptibility of amorphous quartz silica (SiO2).
With the use of the resulting modeled absorptive-dispersive
indices, an estimate for the spectral normal absorptivity has
been obtained. The fidelity of the model obtained using the
VOF has been compared with that obtained within a multi-
objective setting (in terms of the refractive indices and the
absorptivity).

The CDμHO model obtained by VOF analysis demon-
strates a fidelity very near that of the point on the Pareto front
yielding the lowest combined error for the refractive indices
and the total absorptivity. The results of the optimization
also reveal the existence of a specific well-defined region of
nonlocality having a distinct fidelity within the prescribed
multiobjective space. It has been shown that this fidelity is
inaccessible when an integer order description is employed.

APPENDIX: GENERALIZED DIFFERENTIAL OPERATOR

Starting with the variable-order differential operator origi-
nally proposed in Ref. [15]:

∗Dq(t )x(t ) = 1

�[1 − q(t )]

∫ t

t0+
(t − σ )−q(t )D1x(σ ) dσ

+ [x(t0+ ) − x(t0− )] tq(t )

�[1 − q(t )]
,

which is valid for q(t ) < 1, and performing sequential in-
tegration by parts to shift the indetermination caused by
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the gamma function in the denominator, it is relatively straightforward to move the indetermination caused by a
zero-valued denominator by shifting the argument of the gamma function to a generic integer value M > q(t ). By doing so
we arrive at Coimbra’s generalized order differential operator [25]:

CDq(t )x(t ) = 1

�[M − q(t )]

∫ t

0+
(t − σ )M−1−q(t )DMx(σ ) dσ +

M−1∑
m=0

[Dmx(t0+ ) − Dmx(t0− )] tm−q(t )

�[m + 1 − q(t )]
,

which is now valid for any value q(t ) < M . The value of the next larger integer M can be arbitrarily chosen as long as x(t ) is
differentiable to commensurate order.

Note that the last (summation) term in the generalized operator above can be reexpressed as

M−1∑
m=0

[Dmx(t0+ ) − Dmx(t0− )]tm−q(t )

�[m + 1 − q(t )]
= 1

�[M − q(t )]

M−1∑
m=0

⎧⎨⎩[Dmx(t0+ ) − Dmx(t0− )] tm−q(t )
M−1∏

j=m+1

[j − q(t )]

⎫⎬⎭,

in order to keep the denominator in the positive branch of the gamma function. This yields a more desirable form from the
viewpoint of practical numerical evaluation.
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