
On a causal dispersion model for the optical
properties of metals
J. OROSCO AND C. F. M. COIMBRA*
Department of Mechanical and Aerospace Engineering, Center for Energy Research, University of California San Diego,
La Jolla, California 92093-0411, USA
*Corresponding author: ccoimbra@ucsd.edu

Received 28 February 2018; revised 22 May 2018; accepted 30 May 2018; posted 1 June 2018 (Doc. ID 325175); published 26 June 2018

A causal model that is fully compliant with the Kramers–Kronig relations (KKRs) is used for characterizing the
optical response of metals exhibiting sharp, non-Lorentzian regions of interband absorption. This consistent
model also recovers the Gaussian character of the broadened peaks observed in the infrared response of amor-
phous materials. A reductive procedure for optimal fitting of KKR-compliant composite models to the permit-
tivity data of metals over the intraband and interband energetic regimes is introduced and applied to eleven
metals: Ag, Au, Cu, Al, Be, Cr, Ni, Pd, Pt, Ti, and W. We show that results obtained using this optimal procedure
outperform—both qualitatively and quantitatively—those obtained by previous non-causal (KKR non-
compliant) models that are widely used for approximating the permittivity of metals. A comparative analysis
reveals a simultaneous increase in performance (as characterized by the error objective) and a reduction in
the cardinality of the parameterization, often yielding more physically meaningful interpretations. These results
are obtained without compromising model fidelity in regions of sharp Gaussian interband character, indicating
that the proposed model provides an excellent alternative to previously proposed models. ©2018Optical Society of

America
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1. INTRODUCTION

The design and manufacture of optics and electronics depend
on accurate knowledge of the optical properties of the materials
involved [1,2]. Commercial and industrial applications cover a
wide range of precision-designed technologies, including
optoelectronics, thin films, optical interference devices (e.g.,
mirrors, beam splitters, filters), sensing devices, fiber optics,
and microelectronics (e.g., integrated circuits) [1,3–6]. The fre-
quency domain representation of the polarization response of a
material—or its permittivity—can be used to compute these
properties. For this reason, closed-form models are an indispen-
sable theoretical tool for characterizing the optical properties of
a given medium. Such expressions also present a convenient
alternative to tabular data, providing a compact and continuous
means for replicating experimental results. Furthermore, com-
patibility requirements of modern theoretical frameworks may
necessitate closed-form definitions [7–9].

Permittivity models are generally constructed by linearly
superposing (in the frequency domain) individual functional
descriptions of the various physical mechanisms underlying
the macroscopically observed response. Harmonic oscillators

commonly provide the appropriate basis for both the functional
form and the physical interpretation of the response. However,
the classical Drude–Lorentz theory is incapable of reproducing
in detail the profiles empirically observed for many real materi-
als unless additional, unphysical oscillators are added. To ad-
dress this issue, a phenomenological approach is often adopted
that seeks to formulate a more complete oscillator definition
relative to the intended application. The scope of such an ap-
proach is often targeted at an entire class of materials [3,10,11].

The Brendel–Bormann (BB) oscillator is one such phenom-
enological definition [11]. It results from an approach that was
originally proposed to capture the non-Lorentzian broadening
observed in the infrared response of glasses [12]. This type
of broadening typically has a profile somewhere between
that of pure Lorentzian and pure Gaussian. A number of classes
of materials have been found to exhibit such behavior
[3,10,11,13,14]. While the BB model is effective in reproduc-
ing these profiles, it has been recently shown that the model
fails the Kramers–Kronig criteria for physical consistency of
material response functions [15]. In Ref. [15], the authors have
also proposed a novel model that produces the desired tunable
Gaussian–Lorentzian profiles, while adhering strictly to the
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Kramers–Kronig relations (KKRs). The proposedmodel is capable
of accurately reproducing the broadened profiles observed in
amorphous materials and glasses. In the present work, we show
that a similar approach can also be applied to the anomalous in-
terband behavior that departs substantially from the classical pro-
files predicted by the Drude–Lorentz theory in some metals.

The organization of this work is as follows. In the remainder
of this section, a brief discussion of linear optical response
theory is presented within the context of the Kramers–
Kronig formalism. In Section 2, the various model definitions
are described and their features are discussed. A qualitative and
parametric comparison between the classical profile and the
non-Lorentzian profiles is also given. In Section 3, a reductive
modeling procedure—motivated from both a dynamical and a
mathematical viewpoint—is outlined for obtaining an optimal
parameterization of a general model structure. The utility of the
procedure is demonstrated in Section 4, where parameteriza-
tions are obtained for several metals. The source data used here
is identical to that used in the works of Rakic and collaborators.
The source data include the optical properties of thin metallic
films commonly used in the optoelectronic device industry [3].
The results of the present work are compared to [3]. An analysis
of the results is given within the context of model performance,
physical consistency, and physical interpretability.

A. Linear Optical Response
The linear polarization Pi of a homogeneous material subject to
a low-intensity electromagnetic field Ei is given at a time t by
the convolution [16]

Pi�t� �
Z

∞

−∞
Gij�t − t 0�Ej�t 0�dt 0, (1)

where Gij is the Green’s function tensor describing a general
anisotropic material response. For isotropic and cubic media,
the tensor relations are diagonal in all coordinate systems,
and scalar expressions may instead be used [17]. Then, under
a Fourier transform, one can relate the polarization to the dis-
placement field to arrive at an expression for the relative per-
mittivity of the medium,

ε � 1� χ, (2)

where the electric susceptibility χ is the Fourier transform of the
material response function G. Over absorptive bands, the per-
mittivity becomes complex valued (due to phase loss) and fre-
quency dependent. For conductive media, it is appropriate to
decompose the corresponding complex susceptibility as

χ�ω� �
X
ϕ

χϕ�ω� �
X
β

χβ�ω�, (3)

where ϕ are the free electron (or intraband) absorptive mech-
anisms and β are the bound electron (or interband) absorptive
mechanisms. The complex permittivity is related to the com-
plex refractive index ñ � n� ik by

ε � en2,
� n2 − k2 � i2nk, (4)

so that the latter may always be computed if the former is
known. Here n and k characterize the optical dispersion
and absorption, respectively. In conjunction with Fresnel’s

well-known relations, the absorptive-dispersive indices re-
present a powerful means for obtaining many useful radiative
and optical properties. Knowledge of these properties is critical
to the application-specific material design required for, e.g., op-
tics and microelectronic device manufacture.

B. Kramers–Kronig Relations
A physically meaningful response function must obey the prin-
ciple of relativistic causality. This means that a causal response is
one resulting from an event strictly contained within its histori-
cal light cone. If one considers an impulsive field E�t� � δ�t�
[where δ�t� is the Dirac delta function] incident on an isotropic
medium, then the sifting property applied to Eq. (1) yields
Pδ�t� � G�t�. This implies that G�t� is the (impulse) response
at time t to the impulsive event at time t � 0. Accordingly, the
principle of causality is such that a causal response function has
the property G�t� ≡ 0 ∀ t < 0.

It has been established by Titchmarsh in Ref. [18] that this
result is equivalent to the statement that the real and imaginary
parts of the corresponding Fourier transform (i.e., the suscep-
tibility) form a Hilbert transform pair. If, in addition, the sus-
ceptibility is a Hermitian function—that is, if its inverse
Fourier transform into the time domain is a real-valued
function—then the Kramers–Kronig criteria are satisfied,
and the corresponding relations may be written for media with
nonzero DC conductivity σ0 [17],

χ 0�ω� � 2

π
P
Z

∞

0

ωχ 0 0�ω�
ω2 − ω2 dω,

χ 0 0�ω� � 4πσ0
ω

−
2

π
P
Z

∞

0

ωχ 0�ω�
ω2 − ω2 dω, (5)

with χ 0 � Refχg ∈ R and χ 0 0 � Imfχg ∈ R, and where P
implies that the Cauchy principal value should be recovered
from the singular, improper integral. The corresponding rela-
tions for non-conductive media are obtained by setting σ0 � 0
in Eq. (5).

When obtained directly in the frequency domain, it is not
readily apparent whether a given model corresponds to a real
(i.e., physically possible) material. The KKRs are useful in this
regard. To avoid the mathematical expense of verifying that the
relations in Eq. (5) hold, one can instead leverage the
assumptions introduced during their derivation [19,20]:

1. χ�ω� is analytic in the upper half complex plane,
2. χ�ω� → 0 as jωj → ∞ at least as fast as 1∕jωj, and
3. χ�ω� is Hermitian.

The first condition implies that χ has no singularities in the
upper half complex plane [21], and the third condition implies
that χ�−ω� � χ��ω�, where χ� is the complex conjugate of χ. If
these conditions hold, then the susceptibility model satisfies the
Kramers–Kronig criteria for physical consistency of a real
material.

C. Important Note on Model Consistency
The adherence of a given model to the KKRs extends beyond
simple frequency-domain data-point reproduction. Models
violating the KKRs will generally produce spurious results
when used in certain theoretical frameworks. One example
is the finite difference time-domain (FDTD) method applied
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to frequency-dependent materials [22]. This method utilizes
the time-domain material response, which is the inverse
Fourier transform of the model. A KKR-noncompliant model
will generally produce an invalid time-domain response when
inverted over absorptive bands.

2. MODELS

A. Classical Models
The classical interband absorption model has the form of a
complex damped harmonic oscillator (CDHO) [23],

χLk �ω;ωk� ≜
ω2
pf k

ω2
k − ω

2 − iΓkω
, (6)

where the parameters are the oscillator strength f k, the Lorentz
broadening Γk, and the Lorentz resonance ωk. The plasma fre-
quency ωp is a global material parameter.

The expression in Eq. (6) is equivalent to the Fourier trans-
form of a second-order ordinary differential equation describing
the harmonic motion of a periodically forced mass m having a
restoring force κ with Lorentz resonance

ffiffiffiffiffiffiffiffiffi
κ∕m

p
. The Drude

free electron model is then obtained by setting the correspond-
ing restoring force to zero, leading to

χDk �ω� ≜ −
ω2
pf k

ω�ω� iΓk�
: (7)

Substitution of Eqs. (6) and (7) into Eqs. (2) and (3) yields the
classical permittivity model.

The CDHO is sometimes found to be insufficient when
modeling the interband absorption in metals since it is not
capable of reproducing sharp transitions and therefore may
over-predict absorption in the profile wings [3,23].

B. Brendel–Bormann Oscillator
In order to deal with excessive absorption in the wings of the
classical interband model, Rakić et al. [3] have proposed that
the CDHO be replaced with an expression defined in an earlier
paper by Brendel and Bormann [11]. The expression is based
on a convolution of the Gaussian profile and the Lorentzian
profile. The convolution was originally introduced by Efimov
and Khitrov to capture the broadened peaks observed in the
infrared response of glasses [12]. The Efimov–Khitrov (EK)
convolution is defined as

χEKk �ω� ≜
Z

∞

−∞
χGk �y − ωk�χLk�ω; y�dy, (8)

where the Gaussian decay is

χGk �ωk� ≜
1ffiffiffiffiffi
2π

p
σk

exp

�
−

�
ωkffiffiffi
2

p
σk

�
2
�
, (9)

with σk being the Gaussian broadening parameter. The EK
convolution was evaluated by Brendel and Bormann as [3,11]

χBBk �ω� ≜ iω2
pf k

2
ffiffiffi
2

p
σkak

�
w
�
ak − ωkffiffiffi

2
p

σk

�
� w

�
ak � ωkffiffiffi

2
p

σk

��
, (10)

under the condition that Imfakg � Imf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − iΓkω

p
g > 0,

where w�z� ≜ exp�−z2�erfc�z� is the Faddeeva function, with
erfc�z� being the complex complimentary error function, and
where ak � a 0k � ia 0 0k with

a 0k ≜
ωffiffiffi
2

p f�1� �Γk∕ω�2�1∕2 � 1g1∕2,

a 0 0k ≜
ωffiffiffi
2

p f�1� �Γk∕ω�2�1∕2 − 1g1∕2, (11)

being defined such that a 0 0k > 0. It has been shown in Ref. [15]
that the BB model fails the Kramers–Kronig criteria in two re-
spects: (1) it is not causal due to a singularity at the origin im-
posed by the ak parameter in the denominator of the leading
fractional term, and (2) it does not have a real-valued time-
domain expression (i.e., inverse Fourier transform), since it
lacks Hermicity. In other words, materials modeled with this
oscillator violate well-known physical constraints and therefore
are not found in nature.

C. Physically Consistent Gauss–Lorentz Oscillator
In Ref. [15], we derived an oscillator model that provides the
same Gaussian broadening of a CDHO profile given by the BB
model. This proposed new model also adheres strictly to the
Kramers–Kronig criteria, and will henceforth be referred as
the Gauss–Lorentz (GL) oscillator. The model is

χk�ω� ≜ AkSk�ω�, (12)

where Ak ≜ ω2
pf k∕ω2

k is the amplitude at ω � 0 and

Sk�ω� ≜
�
sw�z�� � sw�z−�

χ0

�
, (13)

is a dimensionless shape function with

sw�z� ≜ i π w�z� � exp�−z2�
�
log�z� � log

�
−
z�

jzj2
�
− iπ

�
,

(14)

where log�z� is the complex logarithm, z� is the complex con-
jugate of z, jzj � ffiffiffiffiffiffiffi

zz�
p

, and z	 ≜ �	αk − ωk�∕
ffiffiffi
2

p
σk. Here,

αk � α 0
k � iα 0 0

k ,

α 0
k ≜ �ω∕2�1∕2��ω2 � Γ2

k�1∕2 � ω�1∕2,
α 0 0
k ≜ �ω∕2�1∕2��ω2 � Γ2

k�1∕2 − ω�1∕2 � μ, (15)

with μ being an arbitrary small constant (0 < μ ≪ 1). Note
that the expressions in Eq. (11) are real valued, whereas the
expressions in Eq. (15) are generally complex valued for
ω < 0. The shape function in Eq. (13) has been normalized by

χ0 ≜ −4
ffiffiffi
π

p
D
�
−

ωkffiffiffi
2

p
σk

�
, (16)

where

D�x� ≜ � ffiffiffi
π

p
∕2� exp�−x2�erfi�x�, (17)

is known as the Dawson’s function, which is related to the
Faddeeva function, D�x� � � ffiffiffi

π
p

∕2�Imfw�x�g, with x ∈ R.
Here, erfi�z� ≜ −i erf �iz� is the imaginary error function. The
expression in Eq. (16) has been defined so that Sk�ω � 0� ≡ 1.
That is, the shape function has unity DC gain.

A comparison of the absorption profiles for the CDHO, the
BB oscillator, and the proposed GL interband model is given in
Fig. 1. The figure demonstrates that the BB model and the GL
model both produce the same “tunable” Gaussian character,
and that this differs from the Lorentzian profile of the CDHO
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by attenuation of absorption away from resonance. The benefit
of the convolution-type profile is that one can achieve
either purely Lorentzian (σk∕Γk → 0) or purely Gaussian
(Γk∕σk → 0) profiles, as well as any “interpolated” profile
between the limiting cases.

An intended consequence of the definition proposed in
Eq. (12) is the property χk�ω � 0� � χLk �ω � 0;ωl � � Ak.
That is, the model is asymptotically equivalent to the CDHO.
Furthermore, the energy absorption maximum of the proposed
model has an energy coordinate, Emax � ℏωχmax

, that is nearly
identical to that of the corresponding CDHO. Both are ap-
proximately equal to Ek � ℏωk. This is preferable since it
means that models expressed with the proposed configuration
will tend toward agreement with empirically observed critical
points. Then if the empirical observations agree with theoretical
predictions, the model obtains some extent of parametric fidel-
ity. These features are demonstrated in Fig. 2.

D. Three-Parameter Gaussian Oscillator
A Kramers–Kronig consistent three-parameter complex (pure)
Gaussian oscillator may be obtained from the previously noted
model by setting Γk � 0. That is, by replacing αk defined in
Eq. (15) with ᾱk � ᾱ 0

k � iᾱ 0 0
k ,

ᾱ 0
k ≜ �ω∕2�1∕2�jωj � ω�1∕2,

ᾱ 0 0
k ≜ �ω∕2�1∕2�jωj − ω�1∕2 � μ: (18)

This is useful result because it allows the more general model to
converge all the way to the Gaussian limit. This provides a
means for model reduction as described further on.

3. IMPLEMENTATION

Since the fidelity of a given model structure is realized through
the specific parameterization, we give attention here not only to
the proposed model, but also to the manner in which the pa-
rameterizations were obtained. The importance of such details
should not be overlooked, since the procedure involves mini-
mizing an objective function that is highly nonlinear in the
model parameters. This implies that the fidelity of a given
model is coupled to the user’s experience with mathematical
optimization. We qualify this statement in a later assessment
of models obtained for real materials, which are generated from
experimental data identical to that used in the work of Rakić
et al. in Ref. [3].

The efforts of Rakić and collaborators provide an appropri-
ate reference for a comparative analysis of modeling fidelity.
This is because their work provides a comprehensive survey
of the efficacy of the BB model when modeling interband
absorption effects for a number of metals relevant to the manu-
facture of optoelectronic devices. For each of the 11 metals
considered, they also provide a comparison to the classical
Drude–Lorentz theory. Their models were obtained by relying
fundamentally on their proprietary global optimization algo-
rithm [24,25]. We take a similar approach with respect to
the novel physically consistent oscillator. Here, however, we uti-
lize a more systematic reductive method that considers each
oscillator separately (rather than surveying a single type over
the entire model bandwidth). This method utilizes nonlinear
programming initialized from the global result to achieve the
results, as described presently.

Over the course of obtaining the parameterizations given in
the present work, a simple-yet-effective procedure was devel-
oped for systematically improving the model fits described
in Ref. [3]. This improvement was obtained for both the
classical Drude–Lorentz parameterizations and for those given
in terms of the proposed GL interband oscillators. In each case,
the performance improvement can be characterized qualita-
tively, in terms of the point-wise error residuals, especially in
the interband regions near the upper bound of the model band-
width. The performance improvement can also be characterized
quantitatively in terms of the objective function defined in
Ref. [3],

Vc�θ� ≜
XM
m�1

�jΔr�ωm; θ�j � jΔi�ωm; θ�j�2, (19)

with

Δr�ωm; θ� ≜ �ε 0�ωm; θ� − ε 0m�∕ε 0m,
Δi�ωm; θ� ≜ �ε 0 0�ωm; θ� − ε 0 0m�∕ε 0 0m, (20)

and where ε�ω; θ� � ε 0�ω; θ� � iε 0 0�ω; θ� is the respective
model evaluated at a frequency ω given a parameter set θ.
Here εm � ε 0m � iε 0 0m is the experimental data defined on an
M -sized frequency grid, ωm, m ∈ �1,M �. The subscript c in
Eq. (19) denotes the consideration of error dynamics that

0 0.5 1 1.5 2
0.0

0.5

1.0

Fig. 1. Absorption profile shape comparison for the CDHO (solid
dark), the BB oscillator (dashed), and the proposed interband model
(solid light). The profile magnitudes have each been normalized and
plotted on grids that are independently scaled by the spectral coordi-
nates of the respective profile maxima (in order to align the profiles).
The parameters are Γk � kΓωk and σk � kσωk , with kΓ �
f0.510, 0, 0g and kσ � f∅, 0.206, 0.214g for the Lorentz, BB, and
proposed models, respectively. With the profiles defined (and normal-
ized) in this way, ωp

ffiffiffiffiffiffi
f k

p
and ωk can be arbitrarily chosen to yield the

profiles above, with each having a full width at half-maximum of 0.5.
This demonstrates the invariant shape dependence of the profiles on
the parameters Γk and σk . The sharp decay of the Gaussian profile
clearly represents attenuated wing absorption. Note the divergence
of the BB profile for ω → 0.
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are coupled (or dependent) with respect to the model. This is
represented by the existence of cross terms in Eq. (19).

A. General Procedure
The proposed procedure is based on addressing the existence of
features in the real and imaginary parts of the data that may be
uncoupled (or independent) with respect to the model. An ex-
ample of such a feature is related to the nonlocal spatiotemporal
field dependence known as the anomalous skin effect [26]. The
traditional treatment for this effect in bulk materials is necessary
when the mean free path of the conduction electrons is on the
order of the field penetration depth (known as the “skin depth”)
[27–29]. For thin films of themonovalent noble metals, the skin
depthmay be on the order of the sample thickness. In these films
it has been shown that the anomalous skin effect, which man-
ifests at room temperatures, can be expressed as a decoupled cor-
rection in the (purely imaginary) loss functionwith respect to the
classical Drude analysis [30] at higher energies. Other examples
include the frequency-dependent damping resulting from car-
rier–carrier interaction [31] (which is apparent at lower ener-
gies), and multiple scattering mechanisms found in metallic
compounds [32] or due to surface impurities [33].

Features such as these may depart in a systematically and
independent way from a mismatch in the defined model space
over a given band. In order to account for these kinds of errors,
it is logical to perform a secondary minimization over an ob-
jective where an independent mismatch is considered. For this
purpose, we define the auxiliary objective function,

Vu�θ� ≜
XM
m�1

f�ψ r�ωm�jΔr�ωm; θ�j�2

� �ψ i�ωm�jΔi�ωm; θ�j�2g, (21)

where the subscript u denotes the fact that the mismatch terms
are uncoupled. The frequency-dependent weighting functions
ψ r and ψ i can be used to emphasize relevant energetic regimes
and to suppress undesirable effects imposed by implicit grid
weighting or by a systematic model mismatch occurring over
the several orders of magnitude typically traversed by the per-
mittivity of conductive media (i.e., over the intraband region).
In order to more completely address implicit grid effects (and
thereby improve system conditioning), we have also precondi-
tioned the grid in accordance with the findings of Pintelon and
Kollár in Ref. [34].

As a rule, the weighting functions should be designed in
accordance with the demands placed on the model by the in-
tended application. For example, to mitigate the effects due to
the intraband region, one may take

ψ r�ωm� � ψ i�ωm� � jωp
mj, (22)

where p can be used to emphasize (p > 0) or de-emphasize
(p < 0) dynamics as a function of frequency. In many cases,
a simple uncoupling without grid weighting (i.e., p � 0) is suf-
ficient. For data with more complicated intraband dynamics,
we found p � 1∕4 to be a reasonable value for improving
the fit at higher frequencies. This can and should be adjusted
as needed on a case-by-case basis to improve fitting of the
interband region, but without neglecting lower frequencies.
To localize the emphasis (or de-emphasis) to specific features
or regions—such as, e.g., fast Gaussian transitions—one may
define the weightings

ψ r�ωm� � ψ i�ωm� � ψ
−jℏωm−Ef j
f , (23)

where ψ f ∈ R > 0 determines the magnitude of the emphasis
(ψ f > 1) or de-emphasis (0 < ψ f < 1), and Ef is the photon

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2 -2 -1 0 1 2
-6

-4

-2

0

2

4

6

Fig. 2. Comparison with CDHO: imaginary (left plot) and real (right plot) parts of the CDHO (thin dark gray line), the BB oscillator (dashed
black line), and the proposed oscillator (thick light gray line). The parameters are: ωp

ffiffiffiffiffiffi
f k

p � 9.01
ffiffiffiffiffiffiffiffiffiffiffi
0.050

p � 2.015, Γk � 0.189, ωk � 2.025, and
σk � 0.631. The units are eV with f k dimensionless. The parameters have been taken directly from the k � 1 oscillator used in the silver model
given in Ref. [3] where σk has been decreased by a factor of 3 for the purposes of visual clarity (the noted undesirable effects are enhanced at greater
σk). The imaginary part of each model has been normalized in the right half plane. The proposed model is asymptotically equivalent to the CDHO at
ω � 0 and for ω → 	∞. Furthermore, the energy absorption maxima for the proposed model and the CDHO are approximately equal, with both
occurring at approximately ωk (i.e., when ω∕ωk � 1). Figure adapted from [15] with permission.
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energy about which the relevant feature is centered. We found
this useful in attending to transitions at the absorption edge of,
e.g., the monovalent noble metals.

The models were initialized from the parameterizations
given in Ref. [3]. At each step requiring objective minimization,
nonlinear programming was employed [35]. Many off-the-shelf
software packages exist for this type of non-convex minimiza-
tion, such as Matlab’s fmincon. The entire procedure, outlined
in the flow chart of Fig. 3, can be grouped into three sections:
(a) procedure initialization, (b) main fitting loop, and (c) finali-
zation criteria. As indicated in the flow chart, the fundamental
benefit is obtained (as previously noted) by successively min-
imizing the uncoupled and coupled error objectives defined in
Eqs. (21) and (19), respectively. The weightings, if defined, are
only used on an interim basis and play no role in assessing the
fidelity of the resulting model. All results shown in the follow-
ing section are given in terms of the objective function Eq. (19)
originally defined in Ref. [3].

B. Reductive Modeling
In order to arrive in a more consistent manner at a conclusive
assessment of the efficacy of a given model structure (e.
g., Gaussian, Lorentzian, or Gauss–Lorentz), we employ a re-
ductive technique that involves beginning with the more gen-
eral structure of Eq. (12). Once refined, the model can be used
to infer the usefulness a particular oscillator configuration.

As discussed in Ref. [15], the second term of sw�z� in
Eq. (14) may misbehave, producing very large values if
σk∕Γk → βk (for some small value βk) due to the exponential
term. This is related to enforcement of the Hermitian require-
ment of the KKRs. When this occurs, it implies that the GL
oscillator should be replaced with a simple CDHO. Thus, the
appropriate strategy for fitting the GL type oscillator is to tem-
porarily replace sw�z� in Eq. (13) with esw�z� ≜ iπw�z� during
minimization, thereby omitting the Hermitian correction term
of Eq. (14). This is useful since these terms will tend to interfere
during the main portion of the minimization process, and they
can be easily reinstated after the CDHO reduction is applied.
Once the temporarily modified model structure has been fit,
the full form of Eq. (14) is reinstated, and any resulting oscil-
lators that misbehave as previously described are replaced with
the CDHO of Eq. (6).

Whenever Γk∕σk → 0, the GL oscillator achieves a purely
Gaussian profile equivalent in shape to that described in
Ref. [10] and is replaced with the three-parameter model pre-
viously discussed.

If after fitting a model, one finds that a particular oscillator
contributes negligibly to the model (i.e., f k ≈ 0), then that os-
cillator should be removed entirely. See, for example, the tita-
nium model given in Table 3 of [3], where f 4 � 0.0002.

Another possibility for reducing the model complexity is re-
lated to the description of “two-electron” type behaviors in the
intraband region. This happens when a CDHO can be replaced
with a Drude term. This is discussed in more detail in the re-
sults section.

If any of the aforementioned model reductions have been
applied, the main step of the fitting procedure is once again
applied. This is indicated by the iteration loop between sections
(b) and (c) in the flow chart of Fig. 3.

C. Efficient Computation of Dispersion Integrals
Evaluation of the various error function types and dispersion in-
tegrals is a demanding task, both in terms of efficiency and in
terms of accuracy. For these purposes, we suggest the excellent
suite of functions written by Johnson [36], which have been
implemented inC++ and have wrappers formost common com-
puting syntaxes (e.g., Matlab, Python, R, and Julia). The reader
is cautioned against evaluating the Faddeeva and Dawson func-
tions by directly compositing the functions, as this may produce
results with unacceptable accuracy.

4. RESULTS AND DISCUSSION

When discussing the models obtained in Ref. [3], we will
refer to the Reference Brendel–Bormann (RBB) model or to
the Reference Drude–Lorentz (RDL) model. We refer to the
Proposed Gauss–Lorentz (PGL) model, the Proposed Drude–
Lorentz (PDL) model, or to the Proposed Composite (PC)

Fig. 3. Fitting procedure: (a) initialization, (b) main fitting step,
and (c) finalization. Sections (b) and (c) constitute an iterative loop.
The initial set θ0 is obtained via a global algorithm such as that given in
[24,25]. The weightings ψ�ω�, if defined, are used only with Vu as
defined in Eq. (21). The finalization step (c) is exited if there is no
significant change in the parameters between two consecutive itera-
tions and if the model complexity is not reduced. The final model
is given by θf .
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model when referencing those from the present work. The PC
designation implies that combinations of the proposed Gauss–
Lorentz oscillators and the classical oscillators are used.

An important note that should be clarified is that the
novel GL-type model structure and the fidelity of the models
obtained using the fitting procedure are not dependent on one
another. The benefit of the novel GL model, discussed in
Ref. [15], is that it adheres strictly to the KKRs. As noted
previously, this means that models utilizing the proposed
GL oscillator are suitable for use beyond simple data point
reproduction. They can be used in generalized simulation
frameworks that require KKR consistency in order to produce
meaningful results (e.g., the FDTDmethod [22]). This will not
generally be the case for models that do not adhere to the
KKRs, such as the BB model. These motivations are further
supported by the fact that KKR analysis is often an integral
part of the data gathering process. It stands to reason then that
models obtained on this data should also observe the KKRs.

A. Silver (Ag)
The data for silver were compiled from three sources, all of
which are tabulated and described in detail in Ref. [37].
The first two sources primarily define the intraband region,
while the latter is mainly representative of interband behaviors.
The ellipsometric data of Dold and Mecke [38] are used for
0.125–0.980 eV. Over the range 0.650–3.300 eV, the data
of Winsemius et al. [39]—which are also the result of ellipso-
metric measurements—are used, leading to a region of overlap
in the data from 0.650–0.980 eV where there is some disagree-
ment in the values for ε 0 0. Over the interband region 3.40–
6.00 eV, the data of Leveque et al. [40] are used. These were
obtained by Kramers–Kronig analysis/transform methods
applied to combined direct in situ reflectance measurements
and curve extrapolation supported by reflectance values derived
(indirectly) from other sources.

The experimental data is plotted alongside the RBB model
and the PC model in Fig. 4. It should be noted that recent
measurements for both Ag and Au [41,42] have shown that
the measurements of j − ε 0j given by Dold and Mecke are spu-
riously low, and are, in fact, not Kramers–Kronig consistent
[43]. This accounts for the systematic disagreement between
the experimental data in the region of overlap and also suggests
a reason for the poor model fit in this region. The sharp inter-
band transition representing a departure from a purely
Lorentzian profile can be observed in ε 0 0 around 4 eV. The
RBB model obtains the objective value Vc � 3793.55 in 22
parameters with one intraband term and five interband terms
(of the BB type). The PCmodel represents a significant improve-
ment, with Vc � 8.04 obtained in just 14 parameters with one
intraband term and four interband terms (one of the CDHO
type and three of the three-parameter GL type). The model
parameters are given in Table 1. The gray entry in the table de-
notes a parameter that can be removed without affecting the
model fidelity (as described in a later section), leading to a
13-parameter model. One observes that in Ref. [3], the exper-
imental data noted above was used to fit the model, but the au-
thors of that work chose to plot only the range 0.125–5.00 eV,
omitting from their plot the last 1 eV of bandwidth. In Fig. 4, we
have plotted the entire modeled bandwidth.

B. Gold (Au)
The ellipsometric data of Dold and Mecke [38] were used for
the portion of the intraband region on the range 0.125–
0.980 eV. In Ref. [31], Thèye gives an excellent comprehensive
analysis of the optical properties of Au, verifying empirically the
analyses with spectrophotometric reflectance and transmittance
measurements of semitransparent Au films. This data is used
for the range 1.000–6.000 eV, which covers the remainder
of the intraband region and the onset of the interband region.
Both of the aforementioned sets are conveniently tabulated
in Ref. [37].

The RBB model and the PGL model are plotted alongside
the experimental data in Fig. 5. As previously discussed, the
data of Dold and Mecke for j − ε 0j are spuriously low valued
(see the discussion for silver). The non-Lorentzian transition
is observed in ε 0 0 around 2 eV. The RBB model obtains the
objective value Vc � 8204.45 in 22 parameters with one intra-
band term and five interband terms (of the BB type). The PGL
represents a significant reduction in model mismatch, with
Vc � 3.45 obtained in 14 parameters with one intraband term
and four interband terms (one of the CDHO type and three of
the three-parameter GL type). The model parameters are given
in Table 1. The gray entry in the table denotes a parameter that
can be removed without affecting the model fidelity (as de-
scribed in a later section), leading to a 13-parameter model.
In Ref. [3], the experimental data noted above was used to
fit the model, but the authors of that work chose to plot only
the range 0.200–5.000 eV. In Fig. 5, we have plotted the entire
modeled bandwidth.

C. Copper (Cu)
Data for copper was obtained from the study of Ordal et al.
[44], where reflectance measurements were combined with

Fig. 4. Permittivity of silver: j − ε 0j (gray) and ε 0 0 (black) given in
terms of experimental data (markers) and models (lines). K denotes
the number of oscillators, and N denotes the number of parameters,
as given in Table 1. The residual subplots are in terms of Eq. (20).
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Kramers–Kronig analysis/transform methods to obtain the dis-
persive-absorptive optical indices. A similar procedure was fol-
lowed by Hagemann et al. [45], who applied Kramers–Kronig
analysis/transform methods to transmittance measurements to

obtain the complex optical index. The data of Ordal et al. was
used for the greater portion of the intraband range 0.093–
0.867 eV, and the data of Hagemann et al. were used on
the range 1.000–6.000 eV, which describes the remainder of
the intraband behaviors as well as the interband region. The
composite set can be found tabulated in Ref. [37].

TheRBBmodel and the PGLmodel are plotted alongside the
experimental data in Fig. 6. The sharp Gaussian transition in ε 0 0

is observed near 2 eV. The RBBmodel yields the objective mini-
mum Vc � 2.75 in 18 parameters with one intraband term and
four interband terms (of the BB type). The PGL produces an
objective minimum of Vc � 1.80 obtained in 14 parameters
with one intraband term and four interband terms (one of
the CDHO type and three of the three-parameter GL type).
The model parameters can be found in Table 1. As in the cases
of both Ag and Au, the gray entry in the table denotes a param-
eter that can be removed without affecting the model fidelity (as
described in a later section), leading to a 13-parameter model.

D. Aluminum (Al)
In Ref. [46], Rakić combined several sources of data for evapo-
rated aluminum films along with application of the Kramers–
Kronig formalism and a proprietary iterative algorithm to arrive
at a single physically consistent data set covering the intra- and
interband regions over the range 0.006–15.100 eV.

As indicated in Table 1, aluminum is one of three models for
which the fitting method selected the classical model (the other

Fig. 5. Same as Fig. 4, except for gold.

Table 1. Model Parameters and Objective Minima

θ Ag Au Cu Al Be Cr Ni Pd Pt Ti W

ωp
a 9.01 9.03 10.83 14.98 18.51 10.75 15.92 9.72 9.59 7.29 13.22

f 0
b 0.790 0.718 0.517 0.401 0.080 0.176 0.094 0.347 0.324 0.143 0.202

Γ0 0.053 0.046 0.024 0.041 0.033 0.051 0.033 0.011 0.078 0.078 0.057

f 1
b 0.382 0.109 0.128 0.349 0.087 0.392 0.423 0.905 0.244 0.303 0.014

Γ1 22.952 0.439 0.370 0.239 1.892 2.214 2.964 7.242 0.602 0.612

ω1 0.187 0.162 0.053 0.009 0.268 0.712 0.763 0.474 0.814 0.356 0.971

σ1 0.612 0.231 0.149

f 2
b 0.033 0.045 0.091 0.082 0.681 0.999 0.173 0.271 1.251 0.257 0.593

Γ2 0.418 2.765 2.466 2.206 1.033 3.632 1.024 1.296

ω2 4.341 2.828 2.842 1.572 2.653 1.990 4.690 0.560 1.721 1.149 1.882

σ2 0.238 0.345 0.532 1.094 0.785

f 3
b 0.074 0.265 0.398 0.165 0.085 0.489 0.663 0.022 3.427 0.707 0.057

Γ3 1.849 1.764 10.592

ω3 4.814 3.834 4.809 1.997 4.793 7.440 10.973 1.587 9.158 1.987 3.456

σ3 0.411 0.811 1.126 0.706 0.997 15.978 0.991 0.342

f 4
b 0.459 1.453 0.785 1.622

Γ4 1.212

ω4 6.284 6.966 8.869 5.693

σ4 0.948 1.907 1.357 1.100

Vc�θ� 8.04 3.45 1.80 0.92 0.47 2.92 0.21 0.62 0.87 1.23 1.59
aFixed during optimization.
bDimensionless. All others in eV. Blank σk entries denote CDHO configurations. Blank Γk entries denote three-parameter (complex) Gaussian configurations. Gray

entries denote removable parameters (by Drude substitution).
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two areNi and Pt). The RDLmodel returns an objective value of
Vc � 1.04 in 14 parameters with one intraband term and four
interband terms (of the CDHO type). The PDL obtains a mini-
mum of Vc � 0.92 in 11 parameters, utilizing one intraband
term and three interband terms (of the CDHO type). The
models and data are plotted in Fig. 7. The model cardinality
is further reduced by removing the gray-colored entry in
Table 1, leading to a 10-parameter model that retains the noted
objective value. The transitions marked by ℏω2 � 1.572 eV
and ℏω3 � 1.997 eV are supported by band theoretical calcu-
lations [47], as well as by the empirical fits of, e.g., [46].

E. Beryllium (Be)
The beryllium data covering the range 0.020–5.000 eV are
taken entirely from the work of Arakawa et al. [48], who per-
formed extensive conditioning on several sets of reflectance
measurement data. Subsequent application of Kramers–
Kronig analysis/transform methods provided the complex
refractive index.

The RDL model obtains a relatively low objective minimum
of Vc � 0.63, using a total of 14 parameters in one intraband
term and four interband terms (of the CDHO type). The PC
model obtains a value of Vc � 0.47 in 12 parameters with one
intraband term and three interband terms (one of the CDHO
type, one of the four-parameter GL type, and one of the three-
parameter GL type). The model parameters are given in
Table 1. The gray entry in the table denotes a parameter that
can be removed without affecting the model fidelity, leading to
an 11-parameter model. We found that the inclusion of the
Gaussian broadened oscillators was necessary in order to reduce
the number of interband oscillators, as using three CDHO os-
cillators was found to be insufficient for accurately modeling
dynamics in the interband region. Furthermore, the interband
excitation parameters ℏω2 � 2.653 and ℏω3 � 4.793 are in
approximate agreement with the empirical and band theoretical
values reported in the literature [49,50] (which would not be
the case if the GL-type oscillators had been omitted). The data
and models are plotted in Fig. 8.

F. Chromium (Cr)
The greater portion of the intraband region covering 0.069–
0.413 eV for the chromium models was provided by the study
of Kirillova and Noskov [51]. Their measurements in this re-
gion were obtained by infrared spectrometric measurements.
Data for the remainder of the intraband region extending into
the interband region was provided by the works of Bos and
Lynch [52] for the range 0.460–5.000 eV. Their analysis

Fig. 6. Same as Fig. 4, except for copper.

Fig. 7. Same as Fig. 4, except for aluminum. Fig. 8. Same as Fig. 4, except for beryllium.
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included measurements of the absorptivity (rather than the
reflectivity) in order to better distinguish the subtle character
of the interband region [52].

The RDL model yields an objective minimum of
Vc � 2.97, obtaining this value in 14 parameters with one in-
traband term and four interband terms (of the CDHO type).
The PC model obtains a minimum of Vc � 2.92 in 11 param-
eters with one intraband term and three interband terms (one
of the three-parameter GL type and two of the CDHO type).
The parameter set is given in Table 1, corresponding to the
models plotted in Fig. 9. The values inside the model band-
width ℏω1 � 0.712 eV and ℏω2 � 1.990 eV find approxi-
mate agreement with band calculations obtained for higher
energy transitions in Ref. [52].

G. Nickel (Ni)
The studies of Lynch et al. [53] and of Vehse and Arakawa [54]
provide data for nickel, which was obtained by application of
Kramers–Kronig analysis/transform methods to absorptivity
and reflectance measurements, respectively. Data from [53]
were used for the intraband region 0.200–3.000 eV, while data
from [54] was used for modeling the interband regime covering
3.100–5.000 eV. These data were combined and tabulated in
Ref. [37], which is the reference given in Ref. [3].

The modeling results for nickel are perhaps the most con-
clusive in determining the utility of the proposed fitting pro-
cedure. It is the second of three materials for which the fitting
procedure selected an entirely classical model (the other two
being Al and Pt). The RDL model provided in Ref. [3] yields
the objective value Vc � 3.42 in 14 parameters, utilizing one
intraband term and four interband terms (of the CDHO type).
The PDL model obtains the minimum Vc � 0.21 in 11
parameters with the use of one intraband term and only three
interband terms (of the CDHO type). Qualitatively, one
observes that the PDL model provides a much more accurate
representation of both ε 0 and ε 0 0 in the interband region of

Fig. 10. There is also a mismatch in the RDL model of ε 0 0

in the low-energy regime that is resolved by the PDL model.
The PDL model values ℏω1 � 0.763 eV and ℏω2 �

4.690 eV agree with values reported in the literature [53–56]
for interband transitions. Band calculations in Refs. [55,57]
predict a broadened structure centered near 0.80 eV represent-
ing weak electronic transitions. As in the case of beryllium, a
meaningful reduction in the cardinality of the parameterization
yields a significant reduction in model mismatch while also pro-
viding a more physically interpretable model.

H. Palladium (Pd)
The study of Weaver and Benbow [58] provides the data for the
range 0.100–0.600 eV, extending just past the peak occurring
near 0.4 eV. They obtained their data using absorptivity mea-
surements obtained by a calorimetric technique that was then
paired with Kramers–Kronig analysis to obtain the phase shift.
The optical constants were then computed directly. Data ob-
tained from reflection and transmission measurements on the
range 0.640–6.000 eV by Johnson and Christy [56] were used
for the remainder. The tabulated data for both studies can be
found in Ref. [59].

The best minimum from [3] is given by the RDL model,
which obtains Vc � 6.35 in 14 parameters using one intraband
term with four interband terms (of the CDHO type). The PC
model represents a significant improvement, returning Vc �
0.62 in 12 parameters with one intraband term and only three
interband terms (one of the four-parameter GL type, one of the
three-parameter GL type, and one of the CDHO type). In
Ref. [3], the authors have plotted the initial portion of the ex-
perimental fit up to 5 eV. In Fig. 11, we have plotted the
entire experimental range. Band theory predicts a low-energy
interband structure at ≈5 eV [60], which is confirmed by
the empirical findings of multiple authors [58]. This likely
corresponds to both ℏω1 � 0.474 eV and ℏω2 � 0.560
parameters, which jointly define this region.

Fig. 9. Same as Fig. 4, except for chromium. Fig. 10. Same as Fig. 4, except for nickel.
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I. Platinum (Pt)
In Ref. [61], Weaver applies Kramers–Kronig analysis on
Drude-like data extrapolation of his own reflectance measure-
ments into the infrared regime in order to obtain a continuous
permittivity data set below 4 eV. He combined this with data
from a number of other sources to extend the range to higher
values. The experimental data used here is the range 0.100–
5.000 eV.

Platinum is the third of three materials for which the mod-
eling procedure selected a purely classical model (the former
two being Al and Ni). The data and models are plotted in
Fig. 12. The RDL model is given in 14 parameters with one
intraband term and four interband terms (of the CDHO type),
yielding an objective minimum of Vc � 0.86. The PDL model
yields a nearly equivalent minimum of Vc � 0.87, but does so
in only 11 parameters, expressed in one intraband term and
three interband terms (of the CDHO type). The parameters
for our model are provided in Table 1. As noted in Ref. [61],
both d-like and p-like transitions can be found in the band
structure of platinum that corresponds to the resonance param-
eter ℏω2 � 0.814 eV. The value ℏω2 � 1.721 eV is likely
unphysical, providing support to the other portions of the ob-
tained model. Interestingly, the value ℏω3 � 9.158 eV result-
ing from the minimization—which falls well outside the
modeled range—is near the value 9.5 eV predicted by band
calculations that has also been observed empirically at around
9.8 eV [61].

J. Titanium (Ti)
Separate studies conducted by Kirillova and Charikov have pro-
vided data for both the intraband [62] and interband [63] re-
gions, respectively. We have modeled the same range selected in
Ref. [3] 0.062–2.610 eV. Measurements for the latter of the
two studies were obtained from ellipsometric measurements,
while those from the former were obtained by spectrometric
measurements extending into the infrared regime.

The minimum obtained by the RBB model is Vc � 1.38,
which is achieved in 18 parameters, corresponding to one intra-
band term and four interband terms (of the BB type). A nomi-
nal improvement in the objective is obtained by the PC model
with Vc � 1.23, but with a significant reduction in the cardi-
nality of the parameterization. Only 12 parameters are re-
quired, with one intraband term and three interband terms
(one of the four-parameter GL type, one of the three-parameter
GL type, and one of the CDHO type). The models and data
are plotted in Fig. 13 with the corresponding parameters given
in Table 1.

Fig. 11. Same as Fig. 4, except for palladium. Fig. 12. Same as Fig. 4, except for platinum.

Fig. 13. Same as Fig. 4, except for titanium.
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K. Tungsten (W)
The data for tungsten taken from Weaver et al. [64] are also
tabulated in Ref. [37]. These cover the range 0.100–5.000 eV.
Weaver and collaborators obtained absorptivity and reflectivity
measurements on polished crystalline samples. Calorimetry was
used to obtain absorptivity measurements for the initial range
up to 4.4 eV with reflectivity measurements from synchrotron
radiation making up the remainder. Permittivity was then ob-
tained using Kramer-Kronig analysis with supplementary data
sources aiding in high-energy extrapolation.

The RBB model consists of 18 parameters with one intra-
band term and four interband terms (of the BB type) and
obtains an objective minimum of Vc � 10.42. The PGLmodel
requires just 16 parameters with one intraband term and four
interband terms (two of the four-parameter GL type and two
of the three-parameter GL type) to achieve a minimum of
Vc � 1.59. The parameters are provided in Table 1, and the
results are plotted in Fig. 14. Each of the resonant parameters
obtained by the PGL model corresponds to directly to the ab-
sorptivity maxima noted by Weaver and coworkers in Ref. [64].

L. Model Analysis
One should note a subtle-yet-important trend in the parame-
terizations of Table 1. Many of the k � 1 oscillators have the
property Γ1 ≫ ω1, whereas for the k > 1 oscillators the reverse
is often true. The former is not generally a meaningful param-
eter assignment for the time constants of bound electrons. A
closer inspection reveals that these terms are approximating
a secondary Drude-like process (in the intraband region). In
some cases, the multiple Drude-like terms correspond to fea-
tures such as the (previously noted) anomalous skin effect
and electron–electron interactions [30]. The emergence of
these terms by optimization supports the Drude–Roberts
two-electron theory [65], with the auxiliary Drude-like term in
Ag being related to surface impurities and the type observed in
Au being related to the previously noted considerations [33].

To expand upon this point, we consider the k � 0 and
k � 1 terms from the Au model, which we will designate as
the primary and auxiliary Drude terms, respectively. The
low-energy roll-off of the auxiliary term causes the model to
effectively transition to regimes having differing time constant
dependencies. To show this, we consider the extended Drude
analysis [41,66], whereby a frequency-dependent time con-
stant, τ�ω�, is derived according to

1

τ�ω� �
ωε 0 0�ω�

ε∞ − ε 0�ω� : (24)

The high-frequency contribution, ε∞, is estimated by fitting
the expression

ε�ω� � ε∞ −
ω2
p

ω2 � iωΓ
, (25)

over a limited energy range. By fitting the experimental data up
to 3 eV, we obtain for our estimate ε∞ ≈ 5.3. As noted in
Ref. [41], the analysis is relatively insensitive to errors in this
estimation, which become negligible in the low-frequency limit
where our analysis takes place. The results of this analysis are
plotted in Fig. 15.

The figure demonstrates three important details: (1) the
auxiliary Drude term facilitates a transition corresponding to
the frequency dependence of the mean free path time constant
for an extended Drude theory; (2) the (inverse) time constant
transitions from the classical theory at higher energies to the
quadratic regime predicted by the Fermi liquid theory (for elec-
tron–electron interactions), but then continues on to a depend-
ence that has a logarithmic grid dependence at lower energies;
and (3) both the subtle and the prominent features found in the
data of Dold and Mecke [38] are consistent with recent find-
ings [41,42]. The more recent study has shown that at energies
below 0.1 eV, the time constant has an exponential frequency
dependence. These features were found to exist outside of ex-
perimental uncertainty.

For Ag, Au, Cu, Al, and Be, one can safely replace the k � 1
CDHOwith a simple Drude oscillator using the given ff 1,Γ1g
pairings and without affecting the model fidelity (qualitatively
or quantitatively), thereby reducing the parameterization in
those cases by 1. This is indicated by the gray entries in
Table 1. There is no need to plot these modifications, since
they yield precisely the same results previously demonstrated
in Figs. 4–8. In the case of Cr, Ni, and Pd, the additional
Drude-like CDHO terms cannot be reduced to a simple
Drude term, since the dependence on the entire CDHO is
more substantial, being related, as previously noted, to the
effects of lower-energy transitions.

The models obtained for Be, Cr, Pd, Ti, and W—whose
parametric reduction was found to be dependent on the use
of GL type oscillators—suggest that the conclusions of [3]
(i.e., that Gauss–Lorentz type oscillators are primarily useful
for in Au, Ag, and Cu) may not be entirely accurate, since most
of the models in that study were evidently over-parameterized,
so that the additional degrees of freedom in those models may
tend to mask the utility of the Gaussian-type oscillators beyond
the noted cases. Regardless, the resulting parameterizations of
the present study suggest two regimes of behavior in the noble
metals Ag, Au, and Cu. Specifically, the intraband regime isFig. 14. Same as Fig. 4, except for tungsten.
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subject to dynamics that are more completely described
by multiple Drude-like terms, whereas the interband regime
obtains its best parametric minimum in a purely Gaussian
description.

5. CONCLUSIONS

The optical properties of a given medium result from its polari-
zation response to electromagnetic forcing. In the frequency
domain, models for this response often take the form of a linear
combination of harmonic oscillators representing the various
mechanisms underlying the absorption profile over a given en-
ergetic bandwidth. In order for a given model to generally re-
present a real (i.e., physically possible) material, it must adhere
to a set of physical constraints known as the Kramers–Kronig
Relations (KKRs). These KKRs ensure that a model can be
used in generalized simulation frameworks.

The Brendel–Bormann (BB) oscillator has often been used
to capture the Gaussian character observed in the absorption
profiles of real materials. However, the BB oscillator does not
satisfy the KKRs. Models based on BB oscillators do not gen-
erally represent real materials and may produce spurious results
when used in certain simulation frameworks. Recently, a model
has been proposed that accurately reproduces this Gaussian
character while also adhering strictly to the KKRs [15].

Here we extend the range of utility for the model proposed
in Ref. [15] to the interband character of metals (notably the
sharp transitions observed in Ag, Au, and Cu). A detailed and
generic procedure is given for finding an optimal parameteriza-
tion of the intraband-interband response in terms of the physi-
cally consistent model. The procedure, when combined with
the general model structure, allows for a reductive modeling

approach. The resulting optimized models represent a signifi-
cant qualitative and quantitative improvement over those
obtained in previous studies utilizing KKR-noncompliant
BB oscillators to achieve the same purpose.

The models obtained using the proposed procedure with the
novel KKR-compliant oscillator simultaneously reduce the
model mismatch and the number of parameters needed for
high accuracy. This implies a reduction in unphysical overfit-
ting and improvement in fidelity. The results demonstrate the
utility of the procedure and indicate that properly parameter-
ized models tend to reveal the more accurate and reduced
nature of the model components while also improving the
physical interpretability of the model.
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