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Optical response of thin amorphous films to infrared radiation
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We briefly review the electrical-optical response of materials to radiative forcing within the formalism of the
Kramers-Kronig relations. A commensurate set of criteria is described that must be met by any frequency-domain
model representing the time-domain response of a real (i.e., physically possible) material. The criteria are applied
to the Brendel-Bormann (BB) oscillator, a model that was originally introduced for its fidelity at reproducing
the non-Lorentzian peak broadening experimentally observed in the infrared absorption by thin amorphous films
but has since been used for many other common materials. We show that the BB model fails to satisfy the
established physical criteria. Taking an alternative approach to the model derivation, a physically consistent
model is proposed. This model provides the appropriate line-shape broadening for modeling the infrared optical
response of thin amorphous films while adhering strictly to the Kramers-Kronig criteria. Experimental data for
amorphous alumina (Al2O3) and amorphous quartz silica (SiO2) are used to obtain model parametrizations for
both the noncausal BB model and the proposed causal model. The proposed model satisfies consistency criteria
required by the underlying physics and reproduces the experimental data with better fidelity (and often with fewer
parameters) than previously proposed permittivity models.
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I. INTRODUCTION

Determining the frequency domain response, or “permit-
tivity,” of materials to electromagnetic forcing is critical to the
design and fabrication of optics and electronics [1,2], with ap-
plications that include optoelectronics, fiber optics, thin films,
optical interference devices (e.g., filters, beam splitters, and
mirrors), microelectronics (e.g., integrated circuits), and many
other sensing devices [1,3–6]. Closed-form representations of
permittivity that are realized in terms of physically meaningful
parametrizations (i.e., models) provide the required quanti-
tative interpretation for reproducing experimental data. As
a matter of convenience, they also represent a compact and
continuous alternative to discrete tabular data. A continuously
defined function may be desirable, or even required, for reasons
of theoretical compatibility [7–9].

The usual approach to constructing models of this type
is to use a sum of basis harmonic oscillators to capture
the oscillatory dynamics that underlie the macroscopically
observed response. The classical Lorentz harmonic oscillator
theory is often found to be insufficient to reproduce the line
shapes observed in experiments unless additional, and often
unphysical, basis oscillators are added. Thus, efforts at improv-
ing these models often involve formulating a more complete
oscillator to fit the experimentally observed features. This
phenomenological type of model development is frequently
undertaken with an entire class of materials in mind [3,10].

Perhaps the most common non-Lorentzian phenomenon
observed in the response of real materials is a broadening
of the line shape about a known critical point (i.e., resonant
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frequency). Peak broadening of this type is typically observed
experimentally to be somewhere between that of classical
Lorentzian and Gaussian profiles. Behavior that in many cases
more closely resembles Gaussian broadening has been found
in a number of material types (e.g., glasses, metals, and
semiconductors). [3,11–13].

A class of models that is commonly leveraged for its
utility in reproducing complex-valued, nonclassically broad-
ened line shapes employs Brendel-Bormann (BB) oscillators
[3,4,10,14]. The BB oscillator results from a simple con-
volution product of the classical complex damped Lorentz
oscillator with the Gaussian exponential. Unfortunately, as is
demonstrated in this work, models utilizing the BB oscillator
fail the Kramers-Kronig criteria for physical consistency of
material response functions and do not generally represent
a corresponding real-valued, causal time-domain response.
In this work, we define an oscillator that provides better
results for line-shape broadening with an equivalent number of
parameters or fewer while strictly adhering to the established
criteria for physical consistency.

The organization of this work is as follows. In the remainder
of this section, the pertinent theory surrounding material per-
mittivity is briefly summarized. A concise, relevant discussion
surrounding causality and the Kramers-Kronig formalism is
presented. The BB model is then introduced and investigated
using the Kramers-Kronig criteria. In Sec. II, a Gaussian-
Lorentzian oscillator is defined, and a comparative mathemat-
ical analysis is given. In Sec. III, models are presented which
have been obtained using experimental data for amorphous alu-
mina (Al2O3) and amorphous quartz silica (SiO2). The models
are parameterized using both the BB configuration and the pro-
posed configuration. Similarities and differences between the
models (and their respective parametrizations) are discussed.
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A. Linear-response theory

In linear optical media, the polarization density (or, simply,
the polarization) is an extensive property that describes the
bulk macroscopic response of the medium- to low-intensity
electromagnetic radiation. The polarization Pi for a homoge-
neous medium at a given time t is expressed as [15]

Pi(t) =
∫ ∞

−∞
Gi j (t − t ′) Ej (t ′) dt ′, (1)

where Gi j is the Green’s function tensor representing the ma-
terial response to arbitrary perturbations in the external electric
field Ei . Here we have neglected the local-field correction, an
omission that implies no loss of generality within the scope
of this work [15]. In cubic media or for isotropic materials,
the tensor relations are diagonal in all coordinate systems, so
that scalar expressions apply [16]. The displacement field may
then be used under a Fourier transform to express the relative
permittivity ε of the medium:

ε = 1 + χ, (2)

where χ = χe + χd is the susceptibility, which corresponds to
the Fourier transform of G. The values χe and χd represent
contributions from electronic and dielectric behaviors, respec-
tively.

Over absorptive bands, the relative permittivity is frequency
dependent and complex valued (to account for phase loss). For
the insulating amorphous materials considered in this work,
however, the core electrons in the medium represent a real
constant contribution χe to the susceptibility, so that defining
the real constant ε∞ � 1 + χe, the relative permittivity for
a medium having L distinct absorptive mechanisms may be
written

ε(ν) = ε∞ +
L∑

l=1

χd,l(ν), (3)

where the wave number ν (cm−1) is commonly replaced in the
literature with frequency (s−1), angular frequency (rad/s), or
energy (eV) as appropriate for the materials or applications.

The complex permittivity is related to the complex refrac-
tive index, ñ = n + i k:

ε = ñ2,

= n2 − k2 + i 2 n k, (4)

so that when the former is known, the latter may always be
computed. Heren is the dispersive index, and k is the absorptive
index. The absorptive-dispersive indices can be used along
with Fresnel’s well-known equations to obtain many useful
radiative and optical properties, which can, in turn, be used for
the application-specific design of materials commonly used in,
e.g., optics and microelectronic device fabrication.

B. Kramers-Kronig relations

As briefly reviewed and outlined above, the frequency-
dependent permittivity represents the Fourier transform of a
material response function. For such a function to be physically
meaningful, it must obey causality. Within the context of the
present discussion, we assume relativistic causality, which
implies that a signal cannot propagate faster than the speed
of light in a vacuum.

A more formal definition can be given if we consider the
scalar form of (1) with a unit impulse E(t) = δ(t), for which
the sifting property of the Dirac-δ function gives Pδ(t) = G(t).
This implies that G(t) is the (impulse) response at time t to
the field impulse applied at t = 0, so that by the principle of
causality, G(t) = 0 ∀ t < 0. If G has this property, then the
functionχ (ω) = F{G(t)}, whereF{·} is the Fourier transform,
is causal.

Titchmarsh previously established [17] that this result is
equivalent to the requirement that the real and imaginary parts
of χ form a Hilbert transform pair. If we further require that
the time-domain impulse response be real valued, then the
susceptibility must be Hermitian, and the Kramers-Kronig
relations (KKRs) hold:

χ ′(ν) = 2

π
P

∫ ∞

0

ν χ ′′(ν)

ν2 − ν2
dν,

χ ′′(ν) = − 2

π
P

∫ ∞

0

ν χ ′(ν)

ν2 − ν2
dν, (5)

with χ ′ = Re{χ} and χ ′′ = Im{χ}. The notation P implies
that, since the integrand in each expression is singular at ν, the
Cauchy principal value should be recovered. When modeling
directly in the frequency domain, assessing causality of a given
model is not always a straightforward endeavor. The KKRs are
useful in this regard, and when they are satisfied, they can be
leveraged in the experimental setting toward other practical
ends.

When evaluating closed-form expressions (i.e., models), it
is usually a less tedious exercise to invoke the fundamental
assumptions established when deriving the KKRs, which is
achieved assuming relativistic causality of a real-valued time
domain response function [18,19]: (1) χ (ν) is analytic in the
upper half plane, (2) χ (ν) → 0 as |ν| → ∞ at least as fast as
1/|ν|, and (3) χ (ν) is Hermitian. In other words, a function
satisfies the KKRs if it satisfies the three preceding items.

The first item is directly related to (and implies) causality.
It tells us that a causal function may have no singularities in
the upper half complex plane [20]. The second statement is a
convergence requirement that arises when forming a contour
integral enclosing the upper half plane. Note that we may
relax this statement to allow the function to approach a real
constant as |ν| → ∞, in which case the contour integral is still
convergent. Under this relaxation, the permittivity fulfills the
criteria with the appropriate constant being ε∞, in accordance
with (3). Thus, the criteria are also found in the literature with
the second requirement written in this relaxed form [21,22].
The final statement is necessary since the Fourier transform of
a function is real valued if and only if the function is Hermitian.

When it is reasonable to do so, the KKRs should be written
using the expressions (5) rather than as a Hilbert transform
pair. This is because non-Hermitian functions may satisfy
the Hilbert transform [21,23]. This subtle, yet important,
distinction is a possible source of confusion contributing to the
misclassification of some models as KKR consistent [3,10,14]
when they are not [22].

C. Brendel-Bormann oscillator

In crystalline materials, phonon absorption in the infrared
regime is generally attributed to the existence of Van Hove
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singularities in the density of states [24]. These represent points
of nondifferentiability (also referred to as critical points) in
the reciprocal lattice. Analyses of these materials are typically
of a first-principles sort, relying on the crystal structure and
periodicity to characterize response dynamics. These include
computational methods such as density functional theory
[25,26] and analytical methods that parametrize the spatially
dispersive effects in terms of the phonon modes [26–28]. The
latter methods are useful for resolving optical properties of the
medium over frequency-dependent bands.

In many materials, these methods may be insufficient to
adequately describe the material responses [3,5,29,30], many
of which exhibit a broadened, non-Lorentzian character. These
include (among others) amorphous media and glasses [10–
12,31], semiconductors [5,13], and metals/conductors [3].
Peak broadening of this kind represents the overlapping time
scales of dynamics with a frequency-dependent correlation
decay. In the infrared response of amorphous solids, this
behavior arises primarily as a result of phonon dispersion in
the complex lattice geometries, which lack long-range order
[32]. Over longer distances, the lattice behaves as a disordered
N -body dynamic filter (N is very large), whose macroscopic
output is the observed broadening. Thus, a top-down approach
to modeling permittivity in these scenarios is a logical one.

One model that has been generally well received since its
introduction nearly three decades ago is the BB oscillator [10].
The model was originally introduced as a phenomenological
approach to modeling the non-Lorentzian broadening often
observed in the infrared response of thin, solid, amorphous
films. It is given by the convolution

χ
BB

(ν) �
∫ ∞

−∞
χ

G
(y − ν0) χ

L
(ν; y) dy, (6)

where

χ
G

(ν0) � 1√
2 π σ

exp

[
−

(
ν0√
2 σ

)2
]

(7)

represents a Gaussian decay applied to the complex damped
harmonic oscillator (CDHO) profile

χ
L
(ν; ν0) �

ν2
p

ν2
0 − ν2 − i γ ν

, (8)

where νp is the plasma frequency, γ is the Lorentz broadening
parameter, σ is the Gaussian broadening parameter, and ν0

represents the Lorentzian resonant frequency.
The standard closed-form expression for the evaluation of

the convolution in (6) is given in the literature as [3,14]

χ
BB

(ν) = i ν2
p√

8 σ a

[
w

(
a − ν0√

2 σ

)
+ w

(
a + ν0√

2 σ

)]
, (9)

where w(z) � exp(−z2) erfc(−i z) is the Faddeeva function
and a = a′ + i a′′ is defined such that a′′ > 0, with

a′ = ν√
2
{[1 + (γ /ν)2]1/2 + 1}1/2,

a′′ = ν√
2
{[1 + (γ /ν)2]1/2 − 1}1/2. (10)

Note that this is mathematically identical to the closed-form
expression originally given by Brendel and Bormann [10],
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FIG. 1. BB oscillator. The real (thick blue line) and imaginary
(thin orange line) parts of the BB oscillator with νp = 310.83,
γ = 96.49, ν0 = 816.20, and σ = 219.9. The units are cm−1. The
parameters are from a multioscillator model for SiO2 (given in full
in the results section). Here σ was exaggerated by a factor of 10 to
keep the response stable for ν < 0 and to more clearly demonstrate
the divergence resulting from the singularity at ν = 0. Note the
lack of symmetry (antisymmetry) in the real (imaginary) signal,
which indicates the model is not Hermitian. The divergence at ν = 0
indicates the model is not causal.

except that it has been given in terms of the Faddeeva function
(primarily for the purposes of computational efficiency).

The closed-form expression in (9) does not satisfy the
Kramers-Kronig criteria. Indeed, due to an algebraic branch-
point singularity at the origin, the model fails the upper half-
plane holomorphism requirement of Titchmarsh’s theorem
[17] and is therefore not generally causal. This singularity
is due to the parameter a in the denominator of the leading
fractional term. The model also fails the parity requirement
imposed by the Kramers-Kronig criteria, which is necessary for
the signal to correspond to a real-valued time-domain response.
These issues are examined graphically in Fig. 1.

II. PROPOSED MODEL

In this section, we propose a model that has been developed
from the viewpoint that we would like to retain the beneficial
broadening feature of the BB model but also adhere strictly
to the Kramers-Kronig criteria. We also prefer that the model
produce approximately the same line shape about the Lorentz
resonance as that achieved by the BB model under identical
experimental parameter sets, although this is not a strict
requirement. Whenever this can be accomplished, parametriza-
tions utilizing the BB model that already exist within the
literature remain approximately valid for the proposed model
structure. Last, we require that our model obey the CDHO
asymptotics at high and low frequencies.

A. Parity correction

One observes that since (7) is an even real function and (8)
is Hermitian, their product is Hermitian. Furthermore, sums of
their products are also Hermitian. For this reason, the result
of the previous section, that the convolution sum is parity
breaking, is somewhat perplexing. We resolve this incongruity
presently.

Throughout this work, we assume that the preferred sub-
structure of the oscillator is Lorentzian and that the Gaussian
convolution is employed only as a shape function near and
about the Lorentz resonance (this interpretation is underscored
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FIG. 2. Parity correction. The same as Fig. 1, except with the addition of the real (thick dashed line) and imaginary (thin dashed line) parts
of the model using the corrected expressions in (15), given as a function of wave number (cm−1). The models are identical for ν > 0, but the
corrected model retains symmetry (antisymmetry) in the real (imaginary) signals for ν < 0. Near ν = 0, both models diverge, but the corrected
model does so in a manner consistent with the even (odd) character of the real (imaginary) signal. This demonstrates that the divergence and
parity-breaking issues are independent. In other words, the Fourier transform of the parity-corrected model will be real valued, but it will not
generally be causal.

by the ν independence of χ
G

). With this in mind, we prefer
the form of the convolution given by the change of variables
x � y − ν0 and leading to

χ (ν) �
∫ ∞

−∞
χ

G
(x) χ

L
(ν; x + ν0) dx, (11)

which removes the ν0 dependence from the integration limits
(i.e., centers the convolution on the CDHO, rather than on
ν = 0). Now

χ
L
(ν; x + ν0) = ν2

p

x2 + 2 x ν0 + ν2
0 − ν2 − i γ ν

= ν2
p

(x − p+)(x − p−)

= ν2
p

2 α

(
1

x − p+
− 1

x − p−

)
, (12)

where p± � ±α − ν0 and α �
√

ν2 + i γ ν. Then

χ (ν) �
ν2

p

2
√

2 π σ α
(I+ − I−), (13)

with

I± �
∫ ∞

−∞

exp(−t2)

t − z±
dt (14)

and where we have defined t � x/
√

2 σ and z± � p±/
√

2 σ .
The apparent source of the parity-breaking behavior given
by the traditional closed-form expression (9) results from
application of a domain-restricted evaluation of improper
contour integrals having the same form as (14). The more
general result, valid whenever Im(z) �= 0, is given by

I± = i π w(z±)

+ exp(−z2
±)

[
log(z±) + log

(
− z∗

±
|z±|2

)
− i π

]
, (15)

where w(z) � exp(−z2) erfc(−i z) is the Faddeeva function,
log(z) is the complex natural logarithm, z∗ denotes the complex
conjugate of z, and |z| = √

z z∗. This result is markedly
different from that given by the commonly cited reference
of Abramowitz and Stegun [33] [Eq. (7.1.4) therein], which
is restricted to cases for which Im(z) > 0. Unfortunately, the
domain-restricted result of Abramowitz and Stegun is often
misreported in the literature as being a general result [34,35].

If ν < 0, then the expression in square brackets in (15) is
generally nonvanishing. The result is that (15) is Hermitian,
whereas the traditional expression is not. Since the product
of commutable Hermitians is itself Hermitian, (13) will be
Hermitian, that is, parity will be preserved, when (15) is used.
This is demonstrated in Fig. 2.

B. Singularity removal by approximation

Resolving the zero-frequency divergence issue involves
a less direct approach than that used to resolve the parity
issue and requires some intuition about the behavior of the
component functions involved in (13). Before proceeding, we
find it convenient to reexpress our model as

χ (ν) �
ν2

p

2
√

2 π σ α
[fw(z+) − fw(z−)], (16)

with

fw(z) = iπw(z)

+ exp(−z2)

[
log(z) + log

(
− z∗

|z|2
)

− i π

]
. (17)

The primary source of the divergence is the factor 1/α, which
is

1

α
= 1

(ν2 + iγ ν)1/2
= 1

ν1/2[ν − (−iγ )]1/2
, (18)

so that the model evidently has two algebraic branch-point
singularities, one occurring at −iγ and the other at the origin.
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FIG. 3. Singularity removal by approximation. The model parameters are the same as used in Fig. 1. In each plot the thick blue line is
the real part, and the thin orange line is the imaginary part, given as a function of wave number (cm−1). The top row gives model shapes (a)
before and (b) after singularity removal, with the shapes given by S1 � (1/α)[fw(z+) − fw(z+)] and S2 � fw(z+) + fw(z+), respectively. The
shape functions have been normalized to the imaginary part for ease of comparison. The bottom row gives the component functions (c) 1/α,
(d) fw(z+), and (e) fw(z−). The insets of (d) and (e) provide a closer look at the behavior of the imaginary part near the origin. With a sensible
recomposition of the component functions, one obtains a continuous (Hermitian) shape where the singularity has been removed. One notes that
the maxima of (a) and (b) do not occur at the same wave number. This is a desirable feature that is discussed in detail later.

In fact, the complex logarithm functions of (17) each indepen-
dently have logarithmic branch-point singularities whenever
z±(ν) = 0. Solving for this condition, one finds that the
singularities are in the lower half plane as long as γ > 0, so that
the logarithm terms do not violate the criteria. The Faddeeva
function, a product of two entire functions, is also entire. When
γ > 0, the corresponding 1/α singularity is in the lower half
plane, so that this also does not violate the Kramers-Kronig
criteria. The branch-point singularity at the origin, on the other
hand, does violate the criteria.

In order to deal with the singularity in the 1/α factor,
we note that this factor contributes negligibly to the overall
shape of the model away from ν = 0. Then its primary
“purpose” is to provide (multiplicative) support for the overall
real and imaginary signals near ν = 0, with the unfortunate
side effect of divergence of both in the limit. The term
fw(z−) mimics this behavior but does so without diverging.
However, this term is subtracted in (16), so that it contributes
to the anomalous discontinuous behavior of fw(z+) near
zero.

Taking all of this into account, it is clear that by reversing
the sign (i.e., the behavior) of the fw(z−) term and setting 1/α

to unity, we achieve a line shape that approximates the exact
convolution without diverging near ν = 0. The symmetric
complimentary behavior of fw(z+) and fw(z−) is such that
a continuous line shape is produced for all ν (including at
ν = 0). Furthermore, since we have exchanged a Hermitian
term, 1/α, with another Hermitian term, 1, the parity of the

model is unaffected. This process is perhaps better elucidated
graphically, as in Fig. 3.

Due to a scaling difference resulting from these modifi-
cations, the model magnitude must be rescaled. The need
for rescaling is a desirable one since we can choose this
to occur at ν = 0 and require that our model satisfy the
asymptotic behavior of the CDHO. In other words, we require
that our rescaled model have the property χ (ν = 0) = χ

L
(ν =

0; ν0) = ν2
p/ν2

0 .
The final proposed model definition may be intuitively

expressed as

χ (ν) � AS(ν), (19)

where

A � ν2
p/ν2

0 (20)

is the amplitude at ν = 0, determined entirely by the plasma
frequency and Lorentz resonance, and where

S(ν) �
(

fw(z+) + fw(z−)

χ0

)
(21)

is a frequency-dependent, dimensionless shape function which
is jointly determined by the plasma frequency, the Lorentz
resonance, the complex Lorentz damping, and the Gaussian
broadening parameter. The function fw(z) is given in (17), and
we recall that z± � p±/

√
2 σ = (±α − ν0)/

√
2 σ . Since the

range of α is no longer restricted, we give it the more general
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FIG. 4. Comparison with the CDHO profile. (a) Imaginary and (b) real parts of the BB model (thin solid line), the proposed model (thin
dashed line), and the CDHO (thick solid line) as a function of wave number (cm−1). The imaginary parts have been normalized by their
respective right half-plane maxima for ease of comparison. The model parameters are the same as those used in Fig. 1. The proposed model
is asymptotically equivalent to the CDHO (i.e., at ν = 0 and ν = ±∞). The frequency of the energy absorption maximum is in nearly perfect
agreement with the CDHO. Both have an energy absorption maximum occurring at approximately ν0, which is indicated in (a) by the vertical
dotted line. The proposed model clearly represents a continuous complex function satisfying the KKRs and preserving the relevant characteristics
of the underlying classical Lorentz harmonic oscillator theory.

definition α = α′ + i α′′:

α′ � (ν/2)1/2 [(ν2 + γ 2)1/2 + ν ]1/2,

α′′ � (ν/2)1/2 [(ν2 + γ 2)1/2 − ν ]1/2 + μ,
(22)

where μ is an arbitrarily small constant 0 < μ 	 1 (μ = 1/ν0

is a logical choice). Inclusion of μ is necessary for strict
analytical adherence to the Kramers-Kronig formalism (its
omission has a negligible effect in practice). The normalization
parameter is

χ0 � −4
√

π D

(
− ν0√

2 σ

)
, (23)

where D(z) = (
√

π/2) Im{w(z)} is known as Dawson’s inte-
gral. The parameter χ0 has been defined so that S(ν = 0) ≡ 1.
In other words, the shape function has unity dc gain.

The resulting proposed model has exactly the properties
we set out to achieve: (1) strict Kramers-Kronig consistency,
(2) asymptotic equivalence to the CDHO (see Fig. 4), and (3)
“tunable” Gaussian broadening. In addition to these points,
the model produces a line shape that approximates that of the
original BB model under identical parametrizations. For some
materials, the two are nearly equivalent. This is demonstrated
and discussed in the next section, which contains real material
parametrizations for two amorphous materials.

III. RESULTS FOR REAL MATERIALS

For each experimental data set, the model parameters were
obtained by minimizing the relative squared error objective,

J (θ ) � 1

2

M∑
m=1

[(
ε′(νm; θ ) − ε′

m

ε′
m

)2

+
(

ε′′(νm; θ ) − ε′′
m

ε′′
m

)2
]
, (24)

where ε(ν; θ ) = ε′(ν; θ ) + i ε′′(ν; θ ) is the respective model
evaluated at a frequency ν given a parameter set θ and
εm � ε′

m + i ε′′
m represents the experimental data defined on

some M-sized frequency (or wave number) grid νm, m ∈
[1,M]. In practice, one can usually obtain a better fit (or a fit
that is tailored to the intended application) by independently
weighting (either globally or as a function of frequency) the
real and imaginary terms in the objective. We do not weight
the objective in this work, choosing instead to uniformly
apply (24) in order to provide a more standard basis for
comparison.

The objective was minimized with the use of a primal-dual
path-following interior-point method [36]. However, users
should find no difficulty using their preferred method to fit
the model. All models were optimized on a scaled frequency
grid in accordance with the findings of Pintelon and Kollár
[37]. The optimal parameters were then rescaled to the original
grid. The error analysis presented in the following sections was
conducted on the true (i.e., rescaled) model parameters.

A. Implementation

When considering the complex Gaussian limit of the model
γ → 0, one should allow γ to approach some arbitrarily small
positive value (say, 10−10) rather than identically zero. This
allows the correct sign to be retained when ν < 0 during
implementation in a preferred computing environment (e.g.,
MATLAB), thus retaining the Hermiticity of the model. This
represents a valid parameter reduction because the approach
to the purely Gaussian limit implies that the oscillator can be
replaced with a three-parameter complex Gaussian [13].

The term contributed to (17) by the second term of (15)
can occasionally misbehave and produce indeterminate iterates
during the optimization routine due to the exponential factor.
This should not be viewed as aberrant behavior, but rather
as the model structure enforcing the Hermitian requirement
of the Kramers-Kronig relations (which might otherwise be
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FIG. 5. SiO2 permittivity as a function of wave number (cm−1). A six-oscillator model is shown, which has been fit to the data of Popov
et al. [38]. In the model plots, the BB model is indicated by + symbols and the proposed model is indicated by × symbols, so that the symbol
implies consensus. The solid black line indicates the data. In the error plots, the BB model relative error is shown by the solid red line, and the
proposed model relative error is shown by the dots. Also shown in the error plots is the relative consensus error (dashed gray line) between the
BB model and the proposed model, which is effectively zero everywhere. In each case, the relative errors have been obtained by scaling
the true error pointwise by the magnitude of the corresponding experimental data. The parameters for each model are given in Table I.

violated). This occurs when unphysical parameter sets are
investigated by the optimization routine. While the authors
found this to rarely occur in practice, we address it here for
completeness.

The issue arises when σ/γ 	 1. Users experienced with
parameter optimization may take any number of approaches to
mitigating the issue should it arise during parameter fitting
(e.g., limiting γ to meaningful values) depending on the
intended application and the modeling objectives. An approach
that will always ensure well-defined iterates is to simply require
that σ/γ � β, where we have found β ≈ 0.1 to be a reasonable
value. We recall that σ is the Gaussian broadening parameter
and γ is the Lorentzian broadening parameter, so that as
the model approaches this bound, the line shape approaches
the corresponding damped Lorentzian profile (readers may
also convince themselves of this fact graphically). In other
words, the approach to this bound implies that the Gaussian
broadening is unnecessary for the fit and a classical CDHO
(requiring one less model parameter) can instead be used
without compromising the model fidelity.

Under identical parametrizations, the proposed model ap-
proximates the shape of the original BB model. This approxi-
mation is very close when σ is somewhat smaller than ν0 (e.g.,
σ/ν0 � 0.125). In practice, this will typically occur when the
molecular complexity and/or lattice disorder is relatively low.
In the interest of accuracy, a reparameterization should always
be obtained when using the proposed model with previously
obtained BB parametrizations. However, the advantage of the
parameter set similarity is that existing BB parametrizations
can be used as initializers for the proposed model struc-
ture. When σ/ν0 meets the approximate requirement above,
the optimization algorithm converges quickly (from a BB
initializer). In either case, parametrizations of the proposed
model are capable of reproducing the fidelity of the BB
model while also providing the desirable features previously
noted.

When σ is larger, the broadened peak of the proposed model
is shifted from that of the BB model. However, the frequency
of the proposed model’s energy absorption maximum is in
nearly perfect agreement with that of the CDHO: both are
approximately equal to ν0. The ultimate goal of the proposed
model is to yield a physically interpretable parameterized fit
to experimental data (rather than to identically fit an existing
model structure). Thus, in these cases the shifted peak of the
proposed model is a desirable feature since this means that
E0 = h̄ ν0 more accurately represents the underlying physics.
In other words, the optimized model parameter ν0 will be
in agreement with the experimentally observed critical point
when expressed in the parameter space of the proposed model.
This is clearly demonstrated in Fig. 4.

B. Silicon dioxide

The data for amorphous silicon dioxide were taken from
Popova et al. [38], who obtained tabulated values for the
refractive index by application of Kramers-Kronig analysis
to spectrophotometric reflection measurements. The data were
selected since they encompass the broadband infrared response
of the material. A more comprehensive study of amorphous
SiO2 is given by Kitamura et al.[12], in which a 25-parameter
model is obtained for the same data set. Kitamura et al.’s model
utilizes eight Gaussian-like oscillators to model over the noted
spectral range.

Models obtained using the BB oscillator and the proposed
oscillator are plotted in Fig. 5 with the corresponding parame-
ters given in Table I. The model performances, as measured by
the objective (24), are essentially identical. The parameters for
each model are, in most cases equivalent, to within experimen-
tal error, with greater differences observed for larger values of
the broadening parameter. As noted previously, any oscillator
having a corresponding Lorentz damping parameter γk = 0
represents a KKR-consistent complex pure Gaussian oscillator
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TABLE I. SiO2 permittivity model parameters (in units of cm−1).
The values marked with a dagger (†) were fixed during optimization
(in agreement with the literature [4,10]) and are dimensionless. The
last row gives the value of the objective (24) evaluated with the
given (minimizing) parameter set. The last column gives the absolute
difference of the respective values.

θ εBB εP ||
ε∞ 2.10† 2.10† 0.00

νp,1 287.63 287.97 0.34
γ1 0.00 0.00 0.00
ν0,1 1168.76 1166.22 2.54
σ1 54.29 54.35 0.06

νp,2 535.58 535.65 0.07
γ2 0.02 0.00 0.02
ν0,2 1083.50 1083.15 0.35
σ2 19.37 19.38 0.01
νp,3 554.23 554.26 0.03
γ3 39.22 39.23 0.01
ν0,3 1044.57 1044.44 0.13
σ3 11.34 11.34 0.01

νp,4 310.83 310.97 0.13
γ4 96.49 96.53 0.05
ν0,4 816.20 815.60 0.60
σ4 21.99 21.95 0.03

νp,5 90.73 90.87 0.14
γ5 0.19 0.00 0.19
ν0,5 586.45 583.95 2.50
σ5 38.19 38.31 0.12
νp,6 430.08 430.16 0.08
γ6 36.81 36.81 0.00
ν0,6 453.13 452.97 0.16
σ6 8.51 8.51 0.00

J (θ ) 2.54 2.54 0.00

approximation, which is a three-parameter oscillator. Thus, the
proposed model is obtained utilizing only six oscillators (with
three of these being of the three-parameter type) and with only
22 parameters.

C. Alumina

Data for alumina (amorphous Al2O3) were taken from
Eriksson et al. [39,40]. Thin-film samples were prepared
using electron-beam evaporation with substrate temperatures
reaching ≈323 K (≈50 ◦C). The dielectric response was then
obtained from spectrophotometric reflectance and transmit-
tance measurements. This material was chosen specifically to
contrast the silicon dioxide data. The greater number of degrees
of freedom (resulting from the greater molecular complexity),
when filtered through the lattice disorder, yields a greater
characteristic broadening (resulting from the larger spectrum
of dynamics time scales). This is observed in the experimental
data of Fig. 6 and is also reflected in the model parameters
of Table II. The greater part of the increase in broadening
(relative to the silicon dioxide data) can likely be attributed to
a greater degree of lattice disorder resulting from the substrate
deposition method. Due to the larger relative values realized by
each σk , there is a significant difference between the parameter
sets for the BB model and the proposed model. Regardless,
the two models obtain approximately the same minimizing
value for the objective (24), indicating equivalent model
fidelity. The proposed model is obtained in 11 parameters (with
two of the oscillators being of the three-parameter type).

D. General remarks on the models

Each of the foregoing models utilizing the proposed os-
cillator represents a response function for a material that
can physically exist in nature, whereas those utilizing the
physically inconsistent oscillator do not. It has been shown that
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FIG. 6. Al2O3 permittivity as a function of wave number (cm−1). A three-oscillator model is shown, which has been fit to the data of
Eriksson et al. [39,40]. In the model plots, the BB model is indicated by + symbols, and the proposed model is indicated by × symbols, so
that the symbol implies consensus. The solid black line indicates the data. In the error plots, the BB model error is shown by the solid red
line, and the proposed model error is shown by the dots. Also shown in the error plots is the consensus error (dashed gray line) between the BB
model and the proposed model, which is effectively zero everywhere. In each case, the relative errors have been obtained by scaling the true
error pointwise by the magnitude of the corresponding experimental data. The parameters for each model are given in Table II.
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TABLE II. Al2O3 permittivity model parameters (in units of
cm−1). The values marked with a dagger (†) were fixed during opti-
mization (in agreement with the literature [39]) and are dimensionless.
The last row gives the value of the objective (24) evaluated with the
given (minimizing) parameter set. The last column gives the absolute
difference of the respective values.

θ εBB εP ||
ε∞ 2.40† 2.40† 0.00

νp,1 897.75 917.08 19.34
γ1 35.41 36.02 0.61
ν0,1 649.35 620.19 29.16
σ1 142.96 144.27 1.31

νp,2 329.74 237.05 92.70
γ2 0.01 0.00 0.01
ν0,2 374.76 372.08 2.68
σ2 70.41 58.43 11.98

νp,3 181.53 372.50 190.97
γ3 0.01 0.00 0.01
ν0,3 223.38 268.47 45.09
σ3 74.93 139.26 64.33

J (θ ) 0.25 0.24 0.01

the proposed model accurately reproduces the experimental
data with at least the same fidelity as the BB model. However,
although the near-zero frequency response may not be repre-
sented in a given set of data, the singularity in the BB oscillator
(demonstrated in Figs. 1 and 4), which implies noncausality,
precludes its use in other theoretical frameworks where the
response over all frequencies [i.e., ω ∈ (−∞,∞)] is important.

For example, a time-domain analysis of a frequency-
dependent material involves Maxwell’s equations and utilizes
the material’s response (i.e., Green’s) function. This is known
as the finite-difference time-domain method [41]. The mate-
rial’s Green’s function is, of course, the inverse Fourier trans-
form of the susceptibility conducted over all frequencies. No
noncausal material can be expected to produce accurate results
when used with such an analysis. Furthermore, any model that
is not Hermitian will have a time-domain response function
that is generally complex valued and invalid. These issues are
irrespective of the experimental data and are therefore also
true of the preceding silicon dioxide and alumina models that
utilize the BB configuration.

As previously discussed, the proposed model preserves the
underlying classical Lorentz harmonic oscillator theory, which
is not the case for models such as the critical-point model [7,9]
and those generated by Kramers-Kronig construction [35].
The continuous, closed-form functional definition is also an

attractive alternative to models utilizing interim extraction of
the real parts of auxiliary functions [35], to those utilizing
approximate Gaussian quadrature [42], and to those having
a limited range of applicability and a limited capability to
reproduce the full range of Gaussian character [5,22]. This last
point is important because it provides the structural flexibility
needed in order to identify (during the model optimization
procedure) cases where a parameter reduction is possible by
implementation of a purely Gaussian profile.

IV. CONCLUSIONS

The general theory for the response of materials to electro-
magnetic forcing, when discussed within the context of phys-
ically meaningful models, gives rise to the Kramers-Kronig
relations. The KKRs are criteria that must be met by a model
representing the optical response of a real (i.e., physically
possible) material. The criteria are discussed and applied to
the Brendel-Bormann model, a model that is frequently used
to capture the nonclassical peak broadening observed in many
material types (e.g., glasses, metals, and semiconductors).
We show that the BB model fails to satisfy these criteria
in two independent respects: (1) it is not generally causal,
and (2) it does not generally represent a real-valued time-
domain response (i.e., its inverse Fourier transform is generally
complex valued).

By way of an alternative derivation, we arrived at a con-
sistent model that provides the same fundamental benefits
offered by the BB model, Gaussian broadening of a complex
damped harmonic oscillator, while adhering strictly to the
KKRs. Furthermore, the proposed model is asymptotically
equivalent to the CDHO at high and low frequencies. The
proposed model has absorption spectrum maxima that occur
at frequencies nearly identical to that of the corresponding
CDHO’s absorption spectrum maxima (near the Lorentz res-
onance frequencies), whereas the maxima for the BB model
may occur at significantly different frequencies.

Parameterizations have been obtained for amorphous alu-
mina (Al2O3) and amorphous quartz silica (SiO2) using both
the noncausal BB model and the proposed causal model.
The results indicate that the two model types have similar
parametrizations for moderate peak broadening. When greater
molecular complexity and increased lattice disorder result in
more substantial broadening, the resulting parametrizations
differ significantly, with the model proposed in this work
yielding better agreement with the underlying classical Lorentz
harmonic oscillator theory. The proposed model reproduces
or exceeds the fidelity of the BB model (as quantified by
objective minimization), requiring either the same number or
fewer parameters to do so.
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